These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 26373787)

  • 41. Selective Deposition of Catalytic Metals on Plasmonic Au Nanocups for Room-Light-Active Photooxidation of
    Zhang H; Lam SH; Guo Y; Yang J; Lu Y; Shao L; Yang B; Xiao L; Wang J
    ACS Appl Mater Interfaces; 2021 Nov; 13(44):51855-51866. PubMed ID: 33908755
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Promoting reactivity of photoexcited hot electrons in small-sized plasmonic metal nanoparticles that are supported on dielectric nanospheres.
    Rasamani KD; Sun Y
    J Chem Phys; 2020 Feb; 152(8):084706. PubMed ID: 32113372
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Efficient coupling of solar energy to catalytic hydrogenation by using well-designed palladium nanostructures.
    Long R; Rao Z; Mao K; Li Y; Zhang C; Liu Q; Wang C; Li ZY; Wu X; Xiong Y
    Angew Chem Int Ed Engl; 2015 Feb; 54(8):2425-30. PubMed ID: 25327587
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Photoinduced Glycerol Oxidation over Plasmonic Au and AuM (M = Pt, Pd and Bi) Nanoparticle-Decorated TiO₂ Photocatalysts.
    Jedsukontorn T; Saito N; Hunsom M
    Nanomaterials (Basel); 2018 Apr; 8(4):. PubMed ID: 29690645
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Plasmonic Coupling Architectures for Enhanced Photocatalysis.
    Liu D; Xue C
    Adv Mater; 2021 Nov; 33(46):e2005738. PubMed ID: 33891777
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ag/Ag2SO3 plasmonic catalysts with high activity and stability for CO2 reduction with water vapor under visible light.
    Wang D; Yu Y; Zhang Z; Fang H; Chen J; He Z; Song S
    Environ Sci Pollut Res Int; 2016 Sep; 23(18):18369-78. PubMed ID: 27282369
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Understanding the roles of plasmonic Au nanocrystal size, shape, aspect ratio and loading amount in Au/g-C
    Guo Y; Jia H; Yang J; Yin H; Yang Z; Wang J; Yang B
    Phys Chem Chem Phys; 2018 Aug; 20(34):22296-22307. PubMed ID: 30124712
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Plasmonic Enhanced Reactive Oxygen Species Activation on Low-Work-Function Tungsten Nitride for Direct Near-Infrared Driven Photocatalysis.
    Huang W; Gao Y; Wang J; Ding P; Yan M; Wu F; Liu J; Liu D; Guo C; Yang B; Cao W
    Small; 2020 Nov; 16(45):e2004557. PubMed ID: 33043568
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Accurate SERS monitoring of the plasmon mediated UV/visible/NIR photocatalytic and photothermal catalytic process involving Ag@carbon dots.
    Li L; Jin J; Liu J; Yang J; Song W; Yang B; Zhao B
    Nanoscale; 2021 Jan; 13(2):1006-1015. PubMed ID: 33367352
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Plasmon-mediated photocatalytic activity of wet-chemically prepared ZnO nanowire arrays.
    Dao TD; Han G; Arai N; Nabatame T; Wada Y; Hoang CV; Aono M; Nagao T
    Phys Chem Chem Phys; 2015 Mar; 17(11):7395-403. PubMed ID: 25700130
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hot carriers in action: multimodal photocatalysis on Au@SnO
    Fu X; Li GG; Villarreal E; Wang H
    Nanoscale; 2019 Apr; 11(15):7324-7334. PubMed ID: 30938391
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Hot plasmonic electron-driven catalytic reactions on patterned metal-insulator-metal nanostructures.
    Kim SM; Lee C; Goddeti KC; Park JY
    Nanoscale; 2017 Aug; 9(32):11667-11677. PubMed ID: 28776052
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Broadband Plasmonic NbN Photocatalysts for Enhanced Hydrogen Generation from Ammonia Borane under Visible-Near-Infrared Illumination.
    Zhang X; Lu L; Wang J; Cai L; Ling H; Bai X; Wang W
    J Phys Chem Lett; 2022 May; 13(19):4220-4226. PubMed ID: 35512403
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Enhancing catalytic performance of palladium in gold and palladium alloy nanoparticles for organic synthesis reactions through visible light irradiation at ambient temperatures.
    Sarina S; Zhu H; Jaatinen E; Xiao Q; Liu H; Jia J; Chen C; Zhao J
    J Am Chem Soc; 2013 Apr; 135(15):5793-801. PubMed ID: 23566035
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Highly Efficient Visible-Light-Driven Photocatalytic Hydrogen Production on CdS/Cu
    Chu J; Han X; Yu Z; Du Y; Song B; Xu P
    ACS Appl Mater Interfaces; 2018 Jun; 10(24):20404-20411. PubMed ID: 29847085
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Solar-Driven Carbon Nanoreactor Coupling Gold and Platinum Nanocatalysts for Alcohol Oxidations.
    Yang W; Zhao J; Tian H; Wang L; Wang X; Ye S; Liu J; Huang J
    Small; 2020 Jul; 16(30):e2002236. PubMed ID: 32578386
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Near Infrared Light-to-Heat Conversion for Liquid-Phase Oxidation Reactions by Antimony-Doped Tin Oxide Nanocrystals.
    Tada H; Naya SI; Sugime H
    Chemphyschem; 2023 Apr; 24(7):e202200696. PubMed ID: 36535899
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Plasmonic photothermal catalysis for solar-to-fuel conversion: current status and prospects.
    Luo S; Ren X; Lin H; Song H; Ye J
    Chem Sci; 2021 Mar; 12(16):5701-5719. PubMed ID: 34168800
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Gold nanorods/g-C
    Tian H; Liu X; Liang Z; Qiu P; Qian X; Cui H; Tian J
    J Colloid Interface Sci; 2019 Dec; 557():700-708. PubMed ID: 31563060
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Metal-Organic Framework Membranes Encapsulating Gold Nanoparticles for Direct Plasmonic Photocatalytic Nitrogen Fixation.
    Chen LW; Hao YC; Guo Y; Zhang Q; Li J; Gao WY; Ren L; Su X; Hu L; Zhang N; Li S; Feng X; Gu L; Zhang YW; Yin AX; Wang B
    J Am Chem Soc; 2021 Apr; 143(15):5727-5736. PubMed ID: 33847495
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.