These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 26373997)
1. Combining density functional and incremental post-Hartree-Fock approaches for van der Waals dominated adsorbate-surface interactions: Ag2/graphene. de Lara-Castells MP; Mitrushchenkov AO; Stoll H J Chem Phys; 2015 Sep; 143(10):102804. PubMed ID: 26373997 [TBL] [Abstract][Full Text] [Related]
2. Transferability and accuracy by combining dispersionless density functional and incremental post-Hartree-Fock theories: Noble gases adsorption on coronene/graphene/graphite surfaces. de Lara-Castells MP; Bartolomei M; Mitrushchenkov AO; Stoll H J Chem Phys; 2015 Nov; 143(19):194701. PubMed ID: 26590547 [TBL] [Abstract][Full Text] [Related]
3. Assessing the performance of dispersionless and dispersion-accounting methods: helium interaction with cluster models of the TiO2(110) surface. de Lara-Castells MP; Stoll H; Mitrushchenkov AO J Phys Chem A; 2014 Aug; 118(33):6367-84. PubMed ID: 24520826 [TBL] [Abstract][Full Text] [Related]
4. Communication: A combined periodic density functional and incremental wave-function-based approach for the dispersion-accounting time-resolved dynamics of ⁴He nanodroplets on surfaces: ⁴He/graphene. de Lara-Castells MP; Stoll H; Civalleri B; Causà M; Voloshina E; Mitrushchenkov AO; Pi M J Chem Phys; 2014 Oct; 141(15):151102. PubMed ID: 25338874 [TBL] [Abstract][Full Text] [Related]
5. Post-Hartree-Fock studies of the He/Mg(0001) interaction: Anti-corrugation, screening, and pairwise additivity. de Lara-Castells MP; Fernández-Perea R; Madzharova F; Voloshina E J Chem Phys; 2016 Jun; 144(24):244707. PubMed ID: 27369533 [TBL] [Abstract][Full Text] [Related]
6. Physisorption of nucleobases on graphene: a comparative van der Waals study. Le D; Kara A; Schröder E; Hyldgaard P; Rahman TS J Phys Condens Matter; 2012 Oct; 24(42):424210. PubMed ID: 23032709 [TBL] [Abstract][Full Text] [Related]
7. A density-functional study on pi-aromatic interaction: benzene dimer and naphthalene dimer. Sato T; Tsuneda T; Hirao K J Chem Phys; 2005 Sep; 123(10):104307. PubMed ID: 16178597 [TBL] [Abstract][Full Text] [Related]
8. Density functional method including weak interactions: Dispersion coefficients based on the local response approximation. Sato T; Nakai H J Chem Phys; 2009 Dec; 131(22):224104. PubMed ID: 20001021 [TBL] [Abstract][Full Text] [Related]
9. Van der Waals Interactions in Density-Functional Theory: Rare-Gas Diatomics. Kannemann FO; Becke AD J Chem Theory Comput; 2009 Apr; 5(4):719-27. PubMed ID: 26609577 [TBL] [Abstract][Full Text] [Related]
10. A post-Hartree-Fock model of intermolecular interactions: inclusion of higher-order corrections. Johnson ER; Becke AD J Chem Phys; 2006 May; 124(17):174104. PubMed ID: 16689564 [TBL] [Abstract][Full Text] [Related]
11. Many-body dispersion effects in the binding of adsorbates on metal surfaces. Maurer RJ; Ruiz VG; Tkatchenko A J Chem Phys; 2015 Sep; 143(10):102808. PubMed ID: 26374001 [TBL] [Abstract][Full Text] [Related]
12. A practical post-Hartree-Fock approach describing open-shell metal cluster-support interactions. Application to Cu Krupka KM; Krzemińska A; de Lara-Castells MP RSC Adv; 2024 Oct; 14(43):31348-31359. PubMed ID: 39359335 [TBL] [Abstract][Full Text] [Related]
13. Dynamical screening of the van der Waals interaction between graphene layers. Dappe YJ; Bolcatto PG; Ortega J; Flores F J Phys Condens Matter; 2012 Oct; 24(42):424208. PubMed ID: 23032606 [TBL] [Abstract][Full Text] [Related]
14. Van der Waals interactions in density functional theory using Wannier functions. Silvestrelli PL J Phys Chem A; 2009 Apr; 113(17):5224-34. PubMed ID: 19344144 [TBL] [Abstract][Full Text] [Related]
15. Accurate description of van der Waals complexes by density functional theory including empirical corrections. Grimme S J Comput Chem; 2004 Sep; 25(12):1463-73. PubMed ID: 15224390 [TBL] [Abstract][Full Text] [Related]
16. An ab initio investigation of the O(3P)-H2(1sigma(g)+) van der Waals well. Atahan S; Kłos J; Zuchowski PS; Alexander MH Phys Chem Chem Phys; 2006 Oct; 8(38):4420-6. PubMed ID: 17001409 [TBL] [Abstract][Full Text] [Related]
17. Alkane adsorption in Na-exchanged chabazite: the influence of dispersion forces. Göltl F; Hafner J J Chem Phys; 2011 Feb; 134(6):064102. PubMed ID: 21322656 [TBL] [Abstract][Full Text] [Related]
18. Two-step evaluation of binding energy and potential energy surface of van der Waals complexes. Deshmukh MM; Sakaki S J Comput Chem; 2012 Mar; 33(6):617-28. PubMed ID: 22223065 [TBL] [Abstract][Full Text] [Related]
19. Adsorption of benzene on coinage metals: a theoretical analysis using wavefunction-based methods. Caputo R; Prascher BP; Staemmler V; Bagus PS; Wöll C J Phys Chem A; 2007 Dec; 111(49):12778-84. PubMed ID: 17999480 [TBL] [Abstract][Full Text] [Related]
20. Cooperative interplay of van der Waals forces and quantum nuclear effects on adsorption: H at graphene and at coronene. Davidson ER; Klimeš J; Alfè D; Michaelides A ACS Nano; 2014 Oct; 8(10):9905-13. PubMed ID: 25300825 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]