These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 26373997)
41. On the structure and physical origin of the interaction in H(2) ... Cl(-) and H(2) ... Br(-) van der Waals anion complexes. Lukes V; Ilcin M; Laurinc V; Biskupic S J Chem Phys; 2004 Sep; 121(12):5852-9. PubMed ID: 15367012 [TBL] [Abstract][Full Text] [Related]
42. Correcting for dispersion interaction and beyond in density functional theory through force matching. Song Y; Akin-Ojo O; Wang F J Chem Phys; 2010 Nov; 133(17):174115. PubMed ID: 21054014 [TBL] [Abstract][Full Text] [Related]
43. Van der Waals interactions in solids using the exchange-hole dipole moment model. Otero-de-la-Roza A; Johnson ER J Chem Phys; 2012 May; 136(17):174109. PubMed ID: 22583212 [TBL] [Abstract][Full Text] [Related]
44. Benchmark calculations of water-acene interaction energies: Extrapolation to the water-graphene limit and assessment of dispersion-corrected DFT methods. Jenness GR; Karalti O; Jordan KD Phys Chem Chem Phys; 2010 Jun; 12(24):6375-81. PubMed ID: 20414490 [TBL] [Abstract][Full Text] [Related]
45. Chemical accuracy for the van der Waals density functional. Klimeš J; Bowler DR; Michaelides A J Phys Condens Matter; 2010 Jan; 22(2):022201. PubMed ID: 21386245 [TBL] [Abstract][Full Text] [Related]
46. A density-functional theory-based neural network potential for water clusters including van der Waals corrections. Morawietz T; Behler J J Phys Chem A; 2013 Aug; 117(32):7356-66. PubMed ID: 23557541 [TBL] [Abstract][Full Text] [Related]
47. Van der Waals interactions at surfaces by density functional theory using Wannier functions. Silvestrelli PL; Benyahia K; Grubisiĉ S; Ancilotto F; Toigo F J Chem Phys; 2009 Feb; 130(7):074702. PubMed ID: 19239304 [TBL] [Abstract][Full Text] [Related]
48. A simple natural orbital mechanism of "pure" van der Waals interaction in the lowest excited triplet state of the hydrogen molecule. Gritsenko O; Baerends EJ J Chem Phys; 2006 Feb; 124(5):054115. PubMed ID: 16468859 [TBL] [Abstract][Full Text] [Related]
49. Empirical corrections to density functional theory highlight the importance of nonbonded intramolecular interactions in alkanes. Wodrich MD; Jana DF; Schleyer Pv; Corminboeuf C J Phys Chem A; 2008 Nov; 112(45):11495-500. PubMed ID: 18925729 [TBL] [Abstract][Full Text] [Related]
50. A natural orbital analysis of the long range behavior of chemical bonding and van der Waals interaction in singlet H2: the issue of zero natural orbital occupation numbers. Sheng XW; Mentel ŁM; Gritsenko OV; Baerends EJ J Chem Phys; 2013 Apr; 138(16):164105. PubMed ID: 23635109 [TBL] [Abstract][Full Text] [Related]
51. Influence of the van der Waals interaction in the dissociation dynamics of N2 on W(110) from first principles. Martin-Gondre L; Juaristi JI; Blanco-Rey M; Díez Muiño R; Alducin M J Chem Phys; 2015 Feb; 142(7):074704. PubMed ID: 25702021 [TBL] [Abstract][Full Text] [Related]
52. Toward an accurate and efficient theory of physisorption. I. Development of an augmented density-functional theory model. Murdachaew G; de Gironcoli S; Scoles G J Phys Chem A; 2008 Oct; 112(40):9993-1005. PubMed ID: 18771248 [TBL] [Abstract][Full Text] [Related]
53. Potential energy surface for H2O((3)A(")) from accurate ab initio data with inclusion of long-range interactions. Brandão J; Mogo C; Silva BC J Chem Phys; 2004 Nov; 121(18):8861-8. PubMed ID: 15527349 [TBL] [Abstract][Full Text] [Related]
54. A simple and efficient dispersion correction to the Hartree-Fock theory. Yoshida T; Mashima A; Sasahara K; Chuman H Bioorg Med Chem Lett; 2014 Feb; 24(4):1037-42. PubMed ID: 24484898 [TBL] [Abstract][Full Text] [Related]
55. Modeling van der Waals interactions between proteins and inorganic surfaces from time-dependent density functional theory calculations. Oliveira MJ; Botti S; Marques MA Phys Chem Chem Phys; 2011 Sep; 13(33):15055-61. PubMed ID: 21785779 [TBL] [Abstract][Full Text] [Related]
56. Ab initio studies of the interaction potential for the Xe-NO(X2Π) van der Waals complex: bound states and fully quantum and quasi-classical scattering. Kłos J; Aoiz FJ; Menéndez M; Brouard M; Chadwick H; Eyles CJ J Chem Phys; 2012 Jul; 137(1):014312. PubMed ID: 22779653 [TBL] [Abstract][Full Text] [Related]
57. Properties of Organic Liquids when Simulated with Long-Range Lennard-Jones Interactions. Fischer NM; van Maaren PJ; Ditz JC; Yildirim A; van der Spoel D J Chem Theory Comput; 2015 Jul; 11(7):2938-44. PubMed ID: 26575731 [TBL] [Abstract][Full Text] [Related]
58. Improved description of soft layered materials with van der Waals density functional theory. Graziano G; Klimeš J; Fernandez-Alonso F; Michaelides A J Phys Condens Matter; 2012 Oct; 24(42):424216. PubMed ID: 23032994 [TBL] [Abstract][Full Text] [Related]
59. Insight into the description of van der Waals forces for benzene adsorption on transition metal (111) surfaces. Carrasco J; Liu W; Michaelides A; Tkatchenko A J Chem Phys; 2014 Feb; 140(8):084704. PubMed ID: 24588188 [TBL] [Abstract][Full Text] [Related]
60. Van der Waals-corrected density functional theory: benchmarking for hydrogen-nanotube and nanotube-nanotube interactions. Du AJ; Smith SC Nanotechnology; 2005 Oct; 16(10):2118-23. PubMed ID: 20817982 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]