These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 26374001)
1. Many-body dispersion effects in the binding of adsorbates on metal surfaces. Maurer RJ; Ruiz VG; Tkatchenko A J Chem Phys; 2015 Sep; 143(10):102808. PubMed ID: 26374001 [TBL] [Abstract][Full Text] [Related]
2. Density-functional theory with screened van der Waals interactions for the modeling of hybrid inorganic-organic systems. Ruiz VG; Liu W; Zojer E; Scheffler M; Tkatchenko A Phys Rev Lett; 2012 Apr; 108(14):146103. PubMed ID: 22540809 [TBL] [Abstract][Full Text] [Related]
3. Combining density functional and incremental post-Hartree-Fock approaches for van der Waals dominated adsorbate-surface interactions: Ag2/graphene. de Lara-Castells MP; Mitrushchenkov AO; Stoll H J Chem Phys; 2015 Sep; 143(10):102804. PubMed ID: 26373997 [TBL] [Abstract][Full Text] [Related]
4. Insight into the description of van der Waals forces for benzene adsorption on transition metal (111) surfaces. Carrasco J; Liu W; Michaelides A; Tkatchenko A J Chem Phys; 2014 Feb; 140(8):084704. PubMed ID: 24588188 [TBL] [Abstract][Full Text] [Related]
5. Minimizing density functional failures for non-covalent interactions beyond van der Waals complexes. Corminboeuf C Acc Chem Res; 2014 Nov; 47(11):3217-24. PubMed ID: 24655016 [TBL] [Abstract][Full Text] [Related]
6. Physisorption of nucleobases on graphene: a comparative van der Waals study. Le D; Kara A; Schröder E; Hyldgaard P; Rahman TS J Phys Condens Matter; 2012 Oct; 24(42):424210. PubMed ID: 23032709 [TBL] [Abstract][Full Text] [Related]
7. Implementation of empirical dispersion corrections to density functional theory for periodic systems. Reckien W; Janetzko F; Peintinger MF; Bredow T J Comput Chem; 2012 Sep; 33(25):2023-31. PubMed ID: 22684689 [TBL] [Abstract][Full Text] [Related]
8. Communication: A combined periodic density functional and incremental wave-function-based approach for the dispersion-accounting time-resolved dynamics of ⁴He nanodroplets on surfaces: ⁴He/graphene. de Lara-Castells MP; Stoll H; Civalleri B; Causà M; Voloshina E; Mitrushchenkov AO; Pi M J Chem Phys; 2014 Oct; 141(15):151102. PubMed ID: 25338874 [TBL] [Abstract][Full Text] [Related]
9. Role of van der Waals interaction in forming molecule-metal junctions: flat organic molecules on the Au(111) surface. Mura M; Gulans A; Thonhauser T; Kantorovich L Phys Chem Chem Phys; 2010 May; 12(18):4759-67. PubMed ID: 20428556 [TBL] [Abstract][Full Text] [Related]
10. Tuning the work function of stepped metal surfaces by adsorption of organic molecules. Jiang Y; Li J; Su G; Ferri N; Liu W; Tkatchenko A J Phys Condens Matter; 2017 May; 29(20):204001. PubMed ID: 28345536 [TBL] [Abstract][Full Text] [Related]
11. Toward a Reliable Description of the Lattice Vibrations in Organic Molecular Crystals: The Impact of van der Waals Interactions. Bedoya-Martínez N; Giunchi A; Salzillo T; Venuti E; Della Valle RG; Zojer E J Chem Theory Comput; 2018 Aug; 14(8):4380-4390. PubMed ID: 30021070 [TBL] [Abstract][Full Text] [Related]
12. Alkane adsorption in Na-exchanged chabazite: the influence of dispersion forces. Göltl F; Hafner J J Chem Phys; 2011 Feb; 134(6):064102. PubMed ID: 21322656 [TBL] [Abstract][Full Text] [Related]
13. Electronic properties of molecules and surfaces with a self-consistent interatomic van der Waals density functional. Ferri N; DiStasio RA; Ambrosetti A; Car R; Tkatchenko A Phys Rev Lett; 2015 May; 114(17):176802. PubMed ID: 25978248 [TBL] [Abstract][Full Text] [Related]
14. Many-body van der Waals interactions in molecules and condensed matter. DiStasio RA; Gobre VV; Tkatchenko A J Phys Condens Matter; 2014 May; 26(21):213202. PubMed ID: 24805055 [TBL] [Abstract][Full Text] [Related]
15. Post-Hartree-Fock studies of the He/Mg(0001) interaction: Anti-corrugation, screening, and pairwise additivity. de Lara-Castells MP; Fernández-Perea R; Madzharova F; Voloshina E J Chem Phys; 2016 Jun; 144(24):244707. PubMed ID: 27369533 [TBL] [Abstract][Full Text] [Related]
16. Analytical nuclear gradients for the range-separated many-body dispersion model of noncovalent interactions. Blood-Forsythe MA; Markovich T; DiStasio RA; Car R; Aspuru-Guzik A Chem Sci; 2016 Mar; 7(3):1712-1728. PubMed ID: 29899903 [TBL] [Abstract][Full Text] [Related]
17. Describing Both Dispersion Interactions and Electronic Structure Using Density Functional Theory: The Case of Metal-Phthalocyanine Dimers. Marom N; Tkatchenko A; Scheffler M; Kronik L J Chem Theory Comput; 2010 Jan; 6(1):81-90. PubMed ID: 26614321 [TBL] [Abstract][Full Text] [Related]
18. Atomic and molecular adsorption on transition-metal carbide (111) surfaces from density-functional theory: a trend study of surface electronic factors. Vojvodic A; Ruberto C; Lundqvist BI J Phys Condens Matter; 2010 Sep; 22(37):375504. PubMed ID: 21403200 [TBL] [Abstract][Full Text] [Related]
19. Accurate and efficient method for many-body van der Waals interactions. Tkatchenko A; DiStasio RA; Car R; Scheffler M Phys Rev Lett; 2012 Jun; 108(23):236402. PubMed ID: 23003978 [TBL] [Abstract][Full Text] [Related]
20. First-principles theoretical study of Alq3Al interfaces: origin of the interfacial dipole. Yanagisawa S; Lee K; Morikawa Y J Chem Phys; 2008 Jun; 128(24):244704. PubMed ID: 18601362 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]