These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 26374002)

  • 1. Fragment-based (13)C nuclear magnetic resonance chemical shift predictions in molecular crystals: An alternative to planewave methods.
    Hartman JD; Monaco S; Schatschneider B; Beran GJ
    J Chem Phys; 2015 Sep; 143(10):102809. PubMed ID: 26374002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Benchmark fragment-based (1)H, (13)C, (15)N and (17)O chemical shift predictions in molecular crystals.
    Hartman JD; Kudla RA; Day GM; Mueller LJ; Beran GJ
    Phys Chem Chem Phys; 2016 Aug; 18(31):21686-709. PubMed ID: 27431490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved Electrostatic Embedding for Fragment-Based Chemical Shift Calculations in Molecular Crystals.
    Hartman JD; Balaji A; Beran GJO
    J Chem Theory Comput; 2017 Dec; 13(12):6043-6051. PubMed ID: 29139294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced NMR Discrimination of Pharmaceutically Relevant Molecular Crystal Forms through Fragment-Based Ab Initio Chemical Shift Predictions.
    Hartman JD; Day GM; Beran GJ
    Cryst Growth Des; 2016 Nov; 16(11):6479-6493. PubMed ID: 27829821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate 13-C and 15-N molecular crystal chemical shielding tensors from fragment-based electronic structure theory.
    Hartman JD; Beran GJO
    Solid State Nucl Magn Reson; 2018 Dec; 96():10-18. PubMed ID: 30273904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Do Models beyond Hybrid Density Functionals Increase the Agreement with Experiment for Predicted NMR Chemical Shifts or Electric Field Gradient Tensors in Organic Solids?
    Iuliucci RJ; Hartman JD; Beran GJO
    J Phys Chem A; 2023 Mar; 127(12):2846-2858. PubMed ID: 36940431
    [No Abstract]   [Full Text] [Related]  

  • 7. Fragment-Based Electronic Structure Approach for Computing Nuclear Magnetic Resonance Chemical Shifts in Molecular Crystals.
    Hartman JD; Beran GJ
    J Chem Theory Comput; 2014 Nov; 10(11):4862-72. PubMed ID: 26584373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate fragment-based 51-V chemical shift predictions in molecular crystals.
    Mathews A; Hartman JD
    Solid State Nucl Magn Reson; 2021 Aug; 114():101733. PubMed ID: 34082261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GIAO versus GIPAW: Comparison of Methods To Calculate
    Ludwig M; Himmel D; Hillebrecht H
    J Phys Chem A; 2020 Mar; 124(11):2173-2185. PubMed ID: 31999459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting Molecular Crystal Properties from First Principles: Finite-Temperature Thermochemistry to NMR Crystallography.
    Beran GJ; Hartman JD; Heit YN
    Acc Chem Res; 2016 Nov; 49(11):2501-2508. PubMed ID: 27754668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting
    Hartman JD; Capistran D
    Magn Reson Chem; 2024 Jun; 62(6):416-428. PubMed ID: 38114304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Benchmark accuracy of predicted NMR observables for quadrupolar
    Hartman JD; Spock LE; Harper JK
    Magn Reson Chem; 2023 Apr; 61(4):253-267. PubMed ID: 36567433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Critical Analysis of Cluster Models and Exchange-Correlation Functionals for Calculating Magnetic Shielding in Molecular Solids.
    Holmes ST; Iuliucci RJ; Mueller KT; Dybowski C
    J Chem Theory Comput; 2015 Nov; 11(11):5229-41. PubMed ID: 26894239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved description of nuclear magnetic resonance chemical shielding constants using the M06-L meta-generalized-gradient-approximation density functional.
    Zhao Y; Truhlar DG
    J Phys Chem A; 2008 Jul; 112(30):6794-9. PubMed ID: 18613657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving the accuracy of GIPAW chemical shielding calculations with cluster and fragment corrections.
    Hartman JD; Harper JK
    Solid State Nucl Magn Reson; 2022 Dec; 122():101832. PubMed ID: 36198253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the bond-valence method for calculating (29) Si and (31) P magnetic shielding in covalent network solids.
    Holmes ST; Alkan F; Iuliucci RJ; Mueller KT; Dybowski C
    J Comput Chem; 2016 Jul; 37(18):1704-10. PubMed ID: 27117609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A relativistic DFT methodology for calculating the structures and NMR chemical shifts of octahedral platinum and iridium complexes.
    VĂ­cha J; Patzschke M; Marek R
    Phys Chem Chem Phys; 2013 May; 15(20):7740-54. PubMed ID: 23598437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Density functional theory assessment of molecular structures and energies of neutral and anionic Al(n) (n = 2-10) clusters.
    Paranthaman S; Hong K; Kim J; Kim DE; Kim TK
    J Phys Chem A; 2013 Sep; 117(38):9293-303. PubMed ID: 24028335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implementation of a hybrid DFT method for calculating NMR shieldings using Slater-type orbitals with spin-orbital coupling included. Applications to 187Os, 195Pt, and 13C in heavy-metal complexes.
    Krykunov M; Ziegler T; van Lenthe E
    J Phys Chem A; 2009 Oct; 113(43):11495-500. PubMed ID: 19731903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relativistic and electron-correlation effects on the nuclear magnetic resonance shieldings of molecules containing tin and lead atoms.
    Maldonado AF; Aucar GA
    J Phys Chem A; 2014 Sep; 118(36):7863-75. PubMed ID: 25110942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.