These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 26374024)

  • 1. Permutation-invariant distance between atomic configurations.
    Ferré G; Maillet JB; Stoltz G
    J Chem Phys; 2015 Sep; 143(10):104114. PubMed ID: 26374024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metrics for measuring distances in configuration spaces.
    Sadeghi A; Ghasemi SA; Schaefer B; Mohr S; Lill MA; Goedecker S
    J Chem Phys; 2013 Nov; 139(18):184118. PubMed ID: 24320265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing molecules and solids across structural and alchemical space.
    De S; Bartók AP; Csányi G; Ceriotti M
    Phys Chem Chem Phys; 2016 May; 18(20):13754-69. PubMed ID: 27101873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learning molecular energies using localized graph kernels.
    Ferré G; Haut T; Barros K
    J Chem Phys; 2017 Mar; 146(11):114107. PubMed ID: 28330348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic selection of atomic fingerprints and reference configurations for machine-learning potentials.
    Imbalzano G; Anelli A; Giofré D; Klees S; Behler J; Ceriotti M
    J Chem Phys; 2018 Jun; 148(24):241730. PubMed ID: 29960368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Progress in protein-protein docking: atomic resolution predictions in the CAPRI experiment using RosettaDock with an improved treatment of side-chain flexibility.
    Schueler-Furman O; Wang C; Baker D
    Proteins; 2005 Aug; 60(2):187-94. PubMed ID: 15981249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lattice neural network minimization. Application of neural network optimization for locating the global-minimum conformations of proteins.
    Rabow AA; Scheraga HA
    J Mol Biol; 1993 Aug; 232(4):1157-68. PubMed ID: 8371272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction and evaluation of side-chain conformations for protein backbone structures.
    Shenkin PS; Farid H; Fetrow JS
    Proteins; 1996 Nov; 26(3):323-52. PubMed ID: 8953653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer simulations of protein folding with a small number of distance restraints.
    Sikorski A; Kolinski A; Skolnick J
    Acta Biochim Pol; 2002; 49(3):683-92. PubMed ID: 12422238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Native atomic burials, supplemented by physically motivated hydrogen bond constraints, contain sufficient information to determine the tertiary structure of small globular proteins.
    Pereira de Araújo AF; Gomes AL; Bursztyn AA; Shakhnovich EI
    Proteins; 2008 Feb; 70(3):971-83. PubMed ID: 17847091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Method for sampling compact configurations for semistiff polymers.
    Siretskiy A; Elvingson C; Vorontsov-Velyaminov P; Khan MO
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016702. PubMed ID: 21867338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface phase transitions in one-dimensional channels arranged in a triangular cross-sectional structure: theory and Monte Carlo simulations.
    Pasinetti PM; Romá F; Riccardo JL; Ramirez-Pastor AJ
    J Chem Phys; 2006 Dec; 125(21):214705. PubMed ID: 17166038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo study of structural ordering of Lennard-Jones fluids confined in nanochannels.
    Abtahinia H; Ebrahimi F
    J Chem Phys; 2010 Aug; 133(6):064502. PubMed ID: 20707570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Explicit factorization of external coordinates in constrained statistical mechanics models.
    Echenique P; Calvo I
    J Comput Chem; 2006 Nov; 27(14):1748-55. PubMed ID: 16917856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple "time step" Monte Carlo simulations: application to charged systems with Ewald summation.
    Bernacki K; Hetenyi B; Berne BJ
    J Chem Phys; 2004 Jul; 121(1):44-50. PubMed ID: 15260521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accelerating atomic structure search with cluster regularization.
    Sørensen KH; Jørgensen MS; Bruix A; Hammer B
    J Chem Phys; 2018 Jun; 148(24):241734. PubMed ID: 29960341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Path-integral Monte Carlo method for the local Z2 Berry phase.
    Motoyama Y; Todo S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):021301. PubMed ID: 23496453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brownian dynamics and dynamic Monte Carlo simulations of isotropic and liquid crystal phases of anisotropic colloidal particles: a comparative study.
    Patti A; Cuetos A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011403. PubMed ID: 23005413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient Monte Carlo trial moves for polypeptide simulations.
    Betancourt MR
    J Chem Phys; 2005 Nov; 123(17):174905. PubMed ID: 16375567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two new DOSXYZnrc sources for 4D Monte Carlo simulations of continuously variable beam configurations, with applications to RapidArc, VMAT, TomoTherapy and CyberKnife.
    Lobo J; Popescu IA
    Phys Med Biol; 2010 Aug; 55(16):4431-43. PubMed ID: 20668344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.