These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 26374025)

  • 61. Super-resolution fluorescence imaging of directly labelled DNA: from microscopy standards to living cells.
    Flors C
    J Microsc; 2013 Jul; 251(1):1-4. PubMed ID: 23700988
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Quantitative dosing of surfaces with fluorescent molecules: characterization of fractional monolayer coverages by counting single molecules.
    Hanley DC; Harris JM
    Anal Chem; 2001 Nov; 73(21):5030-7. PubMed ID: 11721896
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Quantitative localization microscopy: effects of photophysics and labeling stoichiometry.
    Nieuwenhuizen RP; Bates M; Szymborska A; Lidke KA; Rieger B; Stallinga S
    PLoS One; 2015; 10(5):e0127989. PubMed ID: 25992915
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Quantitative super-resolution imaging with qPAINT.
    Jungmann R; Avendaño MS; Dai M; Woehrstein JB; Agasti SS; Feiger Z; Rodal A; Yin P
    Nat Methods; 2016 May; 13(5):439-42. PubMed ID: 27018580
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A 6-nm ultra-photostable DNA FluoroCube for fluorescence imaging.
    Niekamp S; Stuurman N; Vale RD
    Nat Methods; 2020 Apr; 17(4):437-441. PubMed ID: 32203385
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Quantum dot-encoded mesoporous beads with high brightness and uniformity: rapid readout using flow cytometry.
    Gao X; Nie S
    Anal Chem; 2004 Apr; 76(8):2406-10. PubMed ID: 15080756
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Photoactivatable Fluorogens by Intramolecular C-H Insertion of Perfluoroaryl Azide.
    Xie S; Proietti G; Ramström O; Yan M
    J Org Chem; 2019 Nov; 84(22):14520-14528. PubMed ID: 31589042
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Imaging of single fluorescent molecules using video-rate confocal microscopy.
    Tadakuma H; Yamaguchi J; Ishihama Y; Funatsu T
    Biochem Biophys Res Commun; 2001 Sep; 287(2):323-7. PubMed ID: 11554728
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Water in Biomolecular Fluorescence Spectroscopy and Imaging: Side Effects and Remedies.
    Fürstenberg A
    Chimia (Aarau); 2017 Feb; 71(1-2):26-31. PubMed ID: 28259192
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Investigating cellular structures at the nanoscale with organic fluorophores.
    van de Linde S; Aufmkolk S; Franke C; Holm T; Klein T; Löschberger A; Proppert S; Wolter S; Sauer M
    Chem Biol; 2013 Jan; 20(1):8-18. PubMed ID: 23352135
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Blue, green, and orange-red emission from polystyrene microbeads for solid-state white-light and multicolor emission.
    Sonawane SL; Asha SK
    J Phys Chem B; 2014 Aug; 118(31):9467-75. PubMed ID: 25019930
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Enhancing fluorescence brightness: effect of reverse intersystem crossing studied by fluorescence fluctuation spectroscopy.
    Ringemann C; Schönle A; Giske A; von Middendorff C; Hell SW; Eggeling C
    Chemphyschem; 2008 Mar; 9(4):612-24. PubMed ID: 18324718
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Chemogenetic Tags with Probe Exchange for Live-Cell Fluorescence Microscopy.
    Iyer A; Baranov M; Foster AJ; Chordia S; Roelfes G; Vlijm R; van den Bogaart G; Poolman B
    ACS Chem Biol; 2021 May; 16(5):891-904. PubMed ID: 33913682
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Simultaneous two color image capture for sub-diffraction localization fluorescence microscopy.
    Glasgow BJ; Ma L
    Micron; 2016 Jan; 80():14-9. PubMed ID: 26409111
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Precise Time Superresolution by Event Correlation Microscopy.
    Fang Q; Zhao Y; Lindau M
    Biophys J; 2019 May; 116(9):1732-1747. PubMed ID: 31027888
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Superresolution imaging of targeted proteins in fixed and living cells using photoactivatable organic fluorophores.
    Lee HL; Lord SJ; Iwanaga S; Zhan K; Xie H; Williams JC; Wang H; Bowman GR; Goley ED; Shapiro L; Twieg RJ; Rao J; Moerner WE
    J Am Chem Soc; 2010 Nov; 132(43):15099-101. PubMed ID: 20936809
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Single molecule photobleaching (SMPB) technology for counting of RNA, DNA, protein and other molecules in nanoparticles and biological complexes by TIRF instrumentation.
    Zhang H; Guo P
    Methods; 2014 May; 67(2):169-76. PubMed ID: 24440482
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Precisely calibrated and spatially informed illumination for conventional fluorescence and improved PALM imaging applications.
    Mancebo A; DeMars L; Ertsgaard CT; Puchner EM
    Methods Appl Fluoresc; 2020 Feb; 8(2):025004. PubMed ID: 31995796
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Carbon nanotubes as photoprotectors of organic dyes: reversible photoreaction instead of permanent photo-oxidation.
    Long D; Lin H; Scheblykin IG
    Phys Chem Chem Phys; 2011 Apr; 13(13):5771-7. PubMed ID: 21321723
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Single-molecule high-resolution imaging with photobleaching.
    Gordon MP; Ha T; Selvin PR
    Proc Natl Acad Sci U S A; 2004 Apr; 101(17):6462-5. PubMed ID: 15096603
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.