These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 26374049)

  • 1. Effective temperatures and the breakdown of the Stokes-Einstein relation for particle suspensions.
    Mendoza CI; Santamaría-Holek I; Pérez-Madrid A
    J Chem Phys; 2015 Sep; 143(10):104506. PubMed ID: 26374049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rotational and translational self-diffusion in concentrated suspensions of permeable particles.
    Abade GC; Cichocki B; Ekiel-Jezewska ML; Nägele G; Wajnryb E
    J Chem Phys; 2011 Jun; 134(24):244903. PubMed ID: 21721660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Short-time rheology and diffusion in suspensions of Yukawa-type colloidal particles.
    Heinen M; Banchio AJ; Nägele G
    J Chem Phys; 2011 Oct; 135(15):154504. PubMed ID: 22029321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffusion of a sphere in a dilute solution of polymer coils.
    Krüger M; Rauscher M
    J Chem Phys; 2009 Sep; 131(9):094902. PubMed ID: 19739868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward a nonequilibrium Stokes-Einstein relation via active microrheology of hydrodynamically interacting colloidal dispersions.
    Chu HCW; Zia RN
    J Colloid Interface Sci; 2019 Mar; 539():388-399. PubMed ID: 30597285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the validity of Stokes-Einstein-Debye relations for rotational diffusion in colloidal suspensions.
    Koenderink GH; Zhang H; Aarts DG; Lettinga MP; Philipse AP; Nägele G
    Faraday Discuss; 2003; 123():335-54; discussion 401-21. PubMed ID: 12638869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-frequency viscosity and generalized Stokes-Einstein relations in dense suspensions of porous particles.
    Abade GC; Cichocki B; Ekiel-Jeżewska ML; Nägele G; Wajnryb E
    J Phys Condens Matter; 2010 Aug; 22(32):322101. PubMed ID: 21386474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stokes-Einstein violation for liquids with bounded potentials.
    May HO; Mausbach P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 1):031201. PubMed ID: 17930233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics and friction of a large colloidal particle in a bath of hard spheres: Langevin dynamics simulations and hydrodynamic description.
    Orts F; Ortega G; Garzón EM; Fuchs M; Puertas AM
    Phys Rev E; 2020 May; 101(5-1):052607. PubMed ID: 32575230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Short-time transport properties in dense suspensions: from neutral to charge-stabilized colloidal spheres.
    Banchio AJ; Nägele G
    J Chem Phys; 2008 Mar; 128(10):104903. PubMed ID: 18345924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observation of fractional Stokes-Einstein behavior in the simplest hydrogen-bonded liquid.
    Fernandez-Alonso F; Bermejo FJ; McLain SE; Turner JF; Molaison JJ; Herwig KW
    Phys Rev Lett; 2007 Feb; 98(7):077801. PubMed ID: 17359062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Stokes-Einstein relation at moderate Schmidt number.
    Balboa Usabiaga F; Xie X; Delgado-Buscalioni R; Donev A
    J Chem Phys; 2013 Dec; 139(21):214113. PubMed ID: 24320370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stokes-Einstein relation for pure simple fluids.
    Cappelezzo M; Capellari CA; Pezzin SH; Coelho LA
    J Chem Phys; 2007 Jun; 126(22):224516. PubMed ID: 17581072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sticky, active microrheology: Part 1. Linear-response.
    Huang DE; Zia RN
    J Colloid Interface Sci; 2019 Oct; 554():580-591. PubMed ID: 31326790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of diffusion constants and Stokes-Einstein violation in supercooled liquids.
    Sengupta S; Karmakar S
    J Chem Phys; 2014 Jun; 140(22):224505. PubMed ID: 24929405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relation of shear viscosity and self-diffusion coefficient for simple liquids.
    Rah K; Eu BC
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Oct; 60(4 Pt A):4105-16. PubMed ID: 11970246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The rheology of concentrated suspensions of arbitrarily-shaped particles.
    Santamaría-Holek I; Mendoza CI
    J Colloid Interface Sci; 2010 Jun; 346(1):118-26. PubMed ID: 20303498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Connection of translational and rotational dynamical heterogeneities with the breakdown of the Stokes-Einstein and Stokes-Einstein-Debye relations in water.
    Mazza MG; Giovambattista N; Stanley HE; Starr FW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 1):031203. PubMed ID: 17930235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brownian motion and Einstein relation for migration of coffee particles in coffee suspensions.
    Lin CY; Zhou W; Hu CT; Yang F; Lee S
    J Sci Food Agric; 2019 Jun; 99(8):3950-3956. PubMed ID: 30706475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Viscoelasticity and Stokes-Einstein relation in repulsive and attractive colloidal glasses.
    Puertas AM; De Michele C; Sciortino F; Tartaglia P; Zaccarelli E
    J Chem Phys; 2007 Oct; 127(14):144906. PubMed ID: 17935438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.