These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 26374247)

  • 41. OcUGT1-Catalyzing Glycodiversification of Steroids through Glucosylation and Transglucosylation Actions.
    Xu YL; Kong JQ
    Molecules; 2020 Jan; 25(3):. PubMed ID: 31979165
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Diversity of sugar acceptor of glycosyltransferase 1 from Bacillus cereus and its application for glucoside synthesis.
    Chiu HH; Shen MY; Liu YT; Fu YL; Chiu YA; Chen YH; Huang CP; Li YK
    Appl Microbiol Biotechnol; 2016 May; 100(10):4459-71. PubMed ID: 26795959
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Arabidopsis glycosyltransferases as biocatalysts in fermentation for regioselective synthesis of diverse quercetin glucosides.
    Lim EK; Ashford DA; Hou B; Jackson RG; Bowles DJ
    Biotechnol Bioeng; 2004 Sep; 87(5):623-31. PubMed ID: 15352060
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ca
    Li B; Chang S; Jin D; Zhang S; Chen T; Pan X; Fan B; Lv K; He X
    Int J Biol Macromol; 2019 Aug; 135():373-378. PubMed ID: 31108143
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cytotoxicity and modes of action of 4'-hydroxy-2',6'-dimethoxychalcone and other flavonoids toward drug-sensitive and multidrug-resistant cancer cell lines.
    Kuete V; Nkuete AH; Mbaveng AT; Wiench B; Wabo HK; Tane P; Efferth T
    Phytomedicine; 2014 Oct; 21(12):1651-7. PubMed ID: 25442273
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Efficient modification of the Pseudomonas aeruginosa toxin 2-heptyl-1-hydroxyquinolin-4-one by three Bacillus glycosyltransferases with broad substrate ranges.
    Thierbach S; Sartor P; Yücel O; Fetzner S
    J Biotechnol; 2020 Jan; 308():74-81. PubMed ID: 31786106
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Isobavachalcone: an overview.
    Kuete V; Sandjo LP
    Chin J Integr Med; 2012 Jul; 18(7):543-7. PubMed ID: 22772918
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Two new chalcones from Shuteria sinensis.
    Yang Z; Ma X; Tan W; Zhou L; Zhuang X; Yang S; Qian Z; Zhou Z
    Nat Prod Res; 2015; 29(20):1909-13. PubMed ID: 25687107
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cytotoxic steroidal saponins from Ophiopogon japonicus.
    Li N; Zhang L; Zeng KW; Zhou Y; Zhang JY; Che YY; Tu PF
    Steroids; 2013 Jan; 78(1):1-7. PubMed ID: 23123739
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Features and applications of bacterial glycosyltransferases: current state and prospects.
    Luzhetskyy A; Bechthold A
    Appl Microbiol Biotechnol; 2008 Oct; 80(6):945-52. PubMed ID: 18777021
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Triterpene glucosides from the leaves of Aralia elata and their cytotoxic activities.
    Kuang HX; Wang ZB; Wang QH; Yang BY; Xiao HB; Okada Y; Okuyama T
    Chem Biodivers; 2013 Apr; 10(4):703-10. PubMed ID: 23576356
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of glycosylation on the bioactivity of rapamycin.
    Zhang P; Zhang L; Yue XJ; Tang YJ; Wu C; Li YZ
    Appl Microbiol Biotechnol; 2020 Nov; 104(21):9125-9134. PubMed ID: 32940736
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The Bioavailability, Extraction, Biosynthesis and Distribution of Natural Dihydrochalcone: Phloridzin.
    Tian L; Cao J; Zhao T; Liu Y; Khan A; Cheng G
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33478062
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Biotransformation of celastrol to a novel, well-soluble, low-toxic and anti-oxidative celastrol-29-O-β-glucoside by Bacillus glycosyltransferases.
    Chang TS; Wang TY; Chiang CM; Lin YJ; Chen HL; Wu YW; Ting HJ; Wu JY
    J Biosci Bioeng; 2021 Feb; 131(2):176-182. PubMed ID: 33268318
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Phytochemical investigation of sesquiterpenes from the fruits of Schisandra chinensis and their cytotoxic activity.
    Venkanna A; Siva B; Poornima B; Vadaparthi PR; Prasad KR; Reddy KA; Reddy GB; Babu KS
    Fitoterapia; 2014 Jun; 95():102-8. PubMed ID: 24631765
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In vitro BACE-1 inhibitory phenolic components from the seeds of Psoralea corylifolia.
    Choi YH; Yon GH; Hong KS; Yoo DS; Choi CW; Park WK; Kong JY; Kim YS; Ryu SY
    Planta Med; 2008 Sep; 74(11):1405-8. PubMed ID: 18666047
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cytotoxicity and modes of action of three naturally occurring xanthones (8-hydroxycudraxanthone G, morusignin I and cudraxanthone I) against sensitive and multidrug-resistant cancer cell lines.
    Kuete V; Sandjo LP; Ouete JL; Fouotsa H; Wiench B; Efferth T
    Phytomedicine; 2014 Feb; 21(3):315-22. PubMed ID: 24075210
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cytotoxicity of three naturally occurring flavonoid derived compounds (artocarpesin, cycloartocarpesin and isobavachalcone) towards multi-factorial drug-resistant cancer cells.
    Kuete V; Mbaveng AT; Zeino M; Fozing CD; Ngameni B; Kapche GD; Ngadjui BT; Efferth T
    Phytomedicine; 2015 Nov; 22(12):1096-102. PubMed ID: 26547532
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Two new diterpene derivatives from Euphorbia lunulata Bge and their anti-proliferative activities.
    Liu C; Liao ZX; Liu SJ; Qu YB; Wang HS
    Fitoterapia; 2014 Jul; 96():33-8. PubMed ID: 24685501
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Chemical constituents of Swertia yunnanensis and their anti-hepatitis B virus activity.
    Cao TW; Geng CA; Jiang FQ; Ma YB; He K; Zhou NJ; Zhang XM; Zhou J; Chen JJ
    Fitoterapia; 2013 Sep; 89():175-82. PubMed ID: 23747320
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.