These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 26374393)

  • 1. Tailoring the Synergistic Bronsted-Lewis acidic effects in Heteropolyacid catalysts: Applied in Esterification and Transesterification Reactions.
    Tao M; Xue L; Sun Z; Wang S; Wang X; Shi J
    Sci Rep; 2015 Sep; 5():13764. PubMed ID: 26374393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dehydration of Glycerin to Acrolein Over Heteropolyacid Nano-Catalysts Supported on Silica-Alumina.
    Kang TH; Choi JH; Choi JS; Song IK
    J Nanosci Nanotechnol; 2015 Oct; 15(10):8324-9. PubMed ID: 26726511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cs(x)H(3.0-x)PW12O40 (X = 2.0-3.0) heteropolyacid nano-catalysts for catalytic decomposition of 2,3-dihydrobenzofuran to aromatics.
    Kim JK; Park HW; Hong UG; Choi JH; Song IK
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8884-90. PubMed ID: 25958622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lewis acidity quantification and catalytic activity of Ti, Zr and Al-supported mesoporous silica.
    Zakharova MV; Kleitz F; Fontaine FG
    Dalton Trans; 2017 Mar; 46(12):3864-3876. PubMed ID: 28251214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interplay of Lewis and Brønsted Acid Sites in Zr-Based Metal-Organic Frameworks for Efficient Esterification of Biomass-Derived Levulinic Acid.
    Wang F; Chen Z; Chen H; Goetjen TA; Li P; Wang X; Alayoglu S; Ma K; Chen Y; Wang T; Islamoglu T; Fang Y; Snurr RQ; Farha OK
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):32090-32096. PubMed ID: 31441295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemoselective catalysis with organosoluble Lewis acidic polyoxotungstates.
    Dupré N; Rémy P; Micoine K; Boglio C; Thorimbert S; Lacôte E; Hasenknopf B; Malacria M
    Chemistry; 2010 Jun; 16(24):7256-64. PubMed ID: 20455223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isostructural dinuclear phenoxo-/acetato-bridged manganese(II), cobalt(II), and zinc(II) complexes with labile sites: kinetics of transesterification of 2-hydroxypropyl-p-nitrophenylphosphate.
    Arora H; Barman SK; Lloret F; Mukherjee R
    Inorg Chem; 2012 May; 51(10):5539-53. PubMed ID: 22536852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zn(1.2)H(0.6)PW(12)O(40) Nanotubes with double acid sites as heterogeneous catalysts for the production of biodiesel from waste cooking oil.
    Li J; Wang X; Zhu W; Cao F
    ChemSusChem; 2009; 2(2):177-83. PubMed ID: 19191363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal-organic framework based upon the synergy of a Brønsted acid framework and Lewis acid centers as a highly efficient heterogeneous catalyst for fixed-bed reactions.
    Li B; Leng K; Zhang Y; Dynes JJ; Wang J; Hu Y; Ma D; Shi Z; Zhu L; Zhang D; Sun Y; Chrzanowski M; Ma S
    J Am Chem Soc; 2015 Apr; 137(12):4243-8. PubMed ID: 25773275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into the interplay of Lewis and Brønsted acid catalysts in glucose and fructose conversion to 5-(hydroxymethyl)furfural and levulinic acid in aqueous media.
    Choudhary V; Mushrif SH; Ho C; Anderko A; Nikolakis V; Marinkovic NS; Frenkel AI; Sandler SI; Vlachos DG
    J Am Chem Soc; 2013 Mar; 135(10):3997-4006. PubMed ID: 23432136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Etherification of n-butanol to di-n-butyl ether over Keggin-, Wells-Dawson-, and Preyssler-type heteropolyacid catalysts.
    Kim JK; Choi JH; Park DR; Song IK
    J Nanosci Nanotechnol; 2013 Dec; 13(12):8121-6. PubMed ID: 24266203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A reactivity index study to rationalize the effect of dopants on Brönsted and Lewis acidity occurring in MeAlPOs.
    Chatterjee A
    J Mol Graph Model; 2006 Jan; 24(4):262-70. PubMed ID: 16243556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tailoring acidity and porosity of alumina catalysts via transition metal doping for glucose conversion in biorefinery.
    Yu IKM; Hanif A; Tsang DCW; Yip ACK; Lin KA; Gao B; Ok YS; Poon CS; Shang J
    Sci Total Environ; 2020 Feb; 704():135414. PubMed ID: 31810693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fine-Tuning the Activity of Metal-Organic Framework-Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane.
    Li Z; Peters AW; Platero-Prats AE; Liu J; Kung CW; Noh H; DeStefano MR; Schweitzer NM; Chapman KW; Hupp JT; Farha OK
    J Am Chem Soc; 2017 Oct; 139(42):15251-15258. PubMed ID: 28976757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acidic Properties and Structure-Activity Correlations of Solid Acid Catalysts Revealed by Solid-State NMR Spectroscopy.
    Zheng A; Li S; Liu SB; Deng F
    Acc Chem Res; 2016 Apr; 49(4):655-63. PubMed ID: 26990961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brønsted instead of Lewis acidity in functionalized MIL-101Cr MOFs for efficient heterogeneous (nano-MOF) catalysis in the condensation reaction of aldehydes with alcohols.
    Herbst A; Khutia A; Janiak C
    Inorg Chem; 2014 Jul; 53(14):7319-33. PubMed ID: 25006999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning the Catalytic Properties of UiO-66 Metal-Organic Frameworks: From Lewis to Defect-Induced Brønsted Acidity.
    Cirujano FG; Llabrés I Xamena FX
    J Phys Chem Lett; 2020 Jun; 11(12):4879-4890. PubMed ID: 32496804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal-enzyme frameworks: role of metal ions in promoting enzyme self-assembly on α-zirconium(IV) phosphate nanoplates.
    Pattammattel A; Deshapriya IK; Chowdhury R; Kumar CV
    Langmuir; 2013 Mar; 29(9):2971-81. PubMed ID: 23373444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noble metal ionic catalysts.
    Hegde MS; Madras G; Patil KC
    Acc Chem Res; 2009 Jun; 42(6):704-12. PubMed ID: 19425544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unraveling the ultrafast behavior of nile red interacting with aluminum and titanium co-doped MCM41 materials.
    Martin C; Cohen B; Navarro MT; Corma A; Douhal A
    Phys Chem Chem Phys; 2016 Jan; 18(3):2152-63. PubMed ID: 26690671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.