These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 26375013)

  • 1. The effect of phosphorylation on arrestin-rhodopsin interaction in the squid visual system.
    Robinson KA; Ou WL; Guan X; Sugamori KS; Bandyopadhyay A; Ernst OP; Mitchell J
    J Neurochem; 2015 Dec; 135(6):1129-39. PubMed ID: 26375013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purification of visual arrestin from squid photoreceptors and characterization of arrestin interaction with rhodopsin and rhodopsin kinase.
    Swardfager W; Mitchell J
    J Neurochem; 2007 Apr; 101(1):223-31. PubMed ID: 17394465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. cDNA cloning and characterization of a novel squid rhodopsin kinase encoding multiple modular domains.
    Mayeenuddin LH; Mitchell J
    Vis Neurosci; 2001; 18(6):907-15. PubMed ID: 12020081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Squid visual arrestin: cDNA cloning and calcium-dependent phosphorylation by rhodopsin kinase (SQRK).
    Mayeenuddin LH; Mitchell J
    J Neurochem; 2003 May; 85(3):592-600. PubMed ID: 12694385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulatory arrestin cycle secures the fidelity and maintenance of the fly photoreceptor cell.
    Byk T; Bar-Yaacov M; Doza YN; Minke B; Selinger Z
    Proc Natl Acad Sci U S A; 1993 Mar; 90(5):1907-11. PubMed ID: 8446607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metarhodopsin control by arrestin, light-filtering screening pigments, and visual pigment turnover in invertebrate microvillar photoreceptors.
    Stavenga DG; Hardie RC
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 Mar; 197(3):227-41. PubMed ID: 21046112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation and regeneration of rhodopsin in the insect visual cycle.
    Kiselev A; Subramaniam S
    Science; 1994 Nov; 266(5189):1369-73. PubMed ID: 7973725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of arrestin 2 function in rhabdomeric photoreceptors.
    Plangger A; Malicki D; Whitney M; Paulsen R
    J Biol Chem; 1994 Oct; 269(43):26969-75. PubMed ID: 7929436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel Polar Core and Weakly Fixed C-Tail in Squid Arrestin Provide New Insight into Interaction with Rhodopsin.
    Bandyopadhyay A; Van Eps N; Eger BT; Rauscher S; Yedidi RS; Moroni T; West GM; Robinson KA; Griffin PR; Mitchell J; Ernst OP
    J Mol Biol; 2018 Oct; 430(21):4102-4118. PubMed ID: 30120952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of a single phosphorylation site within octopus rhodopsin.
    Ohguro H; Yoshida N; Shindou H; Crabb JW; Palczewski K; Tsuda M
    Photochem Photobiol; 1998 Dec; 68(6):824-8. PubMed ID: 9867032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The rhodopsin system of the squid.
    HUBBARD R; ST GEORGE RC
    J Gen Physiol; 1958 Jan; 41(3):501-28. PubMed ID: 13491819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An arrestin homolog of blowfly photoreceptors stimulates visual-pigment phosphorylation by activating a membrane-associated protein kinase.
    Bentrop J; Plangger A; Paulsen R
    Eur J Biochem; 1993 Aug; 216(1):67-73. PubMed ID: 8365418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light-regulated biochemical events in invertebrate photoreceptors. 2. Light-regulated phosphorylation of rhodopsin and phosphoinositides in squid photoreceptor membranes.
    Vandenberg CA; Montal M
    Biochemistry; 1984 May; 23(11):2347-52. PubMed ID: 6089868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of arrestin release in the light-driven regeneration of Rh1 Drosophila rhodopsin.
    Kiselev A; Subramaniam S
    Biochemistry; 1996 Feb; 35(6):1848-55. PubMed ID: 8639666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rhodopsin phosphorylation sites and their role in arrestin binding.
    Zhang L; Sports CD; Osawa S; Weiss ER
    J Biol Chem; 1997 Jun; 272(23):14762-8. PubMed ID: 9169442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. C-terminal threonines and serines play distinct roles in the desensitization of rhodopsin, a G protein-coupled receptor.
    Azevedo AW; Doan T; Moaven H; Sokal I; Baameur F; Vishnivetskiy SA; Homan KT; Tesmer JJ; Gurevich VV; Chen J; Rieke F
    Elife; 2015 Apr; 4():. PubMed ID: 25910054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arrestin-rhodopsin binding stoichiometry in isolated rod outer segment membranes depends on the percentage of activated receptors.
    Sommer ME; Hofmann KP; Heck M
    J Biol Chem; 2011 Mar; 286(9):7359-69. PubMed ID: 21169358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct binding of visual arrestin to a rhodopsin carboxyl terminal synthetic phosphopeptide.
    Liu P; Roush ED; Bruno J; Osawa S; Weiss ER
    Mol Vis; 2004 Oct; 10():712-9. PubMed ID: 15480300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Helix formation in arrestin accompanies recognition of photoactivated rhodopsin.
    Feuerstein SE; Pulvermüller A; Hartmann R; Granzin J; Stoldt M; Henklein P; Ernst OP; Heck M; Willbold D; Koenig BW
    Biochemistry; 2009 Nov; 48(45):10733-42. PubMed ID: 19835414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inactivation of photoexcited rhodopsin in retinal rods: the roles of rhodopsin kinase and 48-kDa protein (arrestin).
    Bennett N; Sitaramayya A
    Biochemistry; 1988 Mar; 27(5):1710-5. PubMed ID: 3365420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.