BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 26375614)

  • 1. Replacement of filters for respirable quartz measurement in coal mine dust by infrared spectroscopy.
    Farcas D; Lee T; Chisholm WP; Soo JC; Harper M
    J Occup Environ Hyg; 2016; 13(2):D16-22. PubMed ID: 26375614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of Diffuse Reflection Infrared Spectrometry for End-of-Shift Measurement of α-quartz in Coal Dust Samples.
    Miller AL; Murphy NC; Bayman SJ; Briggs ZP; Kilpatrick AD; Quinn CA; Wadas MR; Cauda EG; Griffiths PR
    J Occup Environ Hyg; 2015; 12(7):421-30. PubMed ID: 25636081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implementing infrared determination of quartz particulates on novel filters for a prototype dust monitor.
    Tuchman DP; Volkwein JC; Vinson RP
    J Environ Monit; 2008 May; 10(5):671-8. PubMed ID: 18449405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Consideration of kaolinite interference correction for quartz measurements in coal mine dust.
    Lee T; Chisholm WP; Kashon M; Key-Schwartz RJ; Harper M
    J Occup Environ Hyg; 2013; 10(8):425-34. PubMed ID: 23767881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Respirable dust exposures in U.S. surface coal mines (1982-1986).
    Piacitelli GM; Amandus HE; Dieffenbach A
    Arch Environ Health; 1990; 45(4):202-9. PubMed ID: 2169228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quartz in coal dust deposited on internal surface of respirable size selective samplers.
    Soo JC; Lee T; Kashon M; Kusti M; Harper M
    J Occup Environ Hyg; 2014; 11(12):D215-9. PubMed ID: 25204985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multicomponent Measurement of Respirable Quartz, Kaolinite and Coal Dust using Fourier Transform Infrared Spectroscopy (FTIR): A Comparison Between Partial Least Squares and Principal Component Regressions.
    Stacey P; Clegg F; Sammon C
    Ann Work Expo Health; 2022 Jun; 66(5):644-655. PubMed ID: 34595523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Respirable coal mine dust at surface mines, United States, 1982-2017.
    Doney BC; Blackley D; Hale JM; Halldin C; Kurth L; Syamlal G; Laney AS
    Am J Ind Med; 2020 Mar; 63(3):232-239. PubMed ID: 31820465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dust exposures at U.S. surface coal mines in 1982-1983.
    Amandus HE; Piacitelli G
    Arch Environ Health; 1987; 42(6):374-81. PubMed ID: 3439816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Respirable coal mine dust in underground mines, United States, 1982-2017.
    Doney BC; Blackley D; Hale JM; Halldin C; Kurth L; Syamlal G; Laney AS
    Am J Ind Med; 2019 Jun; 62(6):478-485. PubMed ID: 31033017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of a Fourier Transform Infrared (FTIR) Principal Component Regression (PCR) Chemometric Method for the Quantification of Respirable Crystalline Silica (Quartz), Kaolinite, and Coal in Coal Mine Dusts from Australia, UK, and South Africa.
    Stacey P; Clegg F; Rhyder G; Sammon C
    Ann Work Expo Health; 2022 Jul; 66(6):781-793. PubMed ID: 35088072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel Calibration Method for the Quantification of Respirable Particles in Mining Scenarios Using Fourier Transform Infrared Spectroscopy.
    Stach R; Barone T; Cauda E; Mizaikoff B
    Appl Spectrosc; 2021 Mar; 75(3):307-316. PubMed ID: 33031006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quartz measurement in coal dust with high-flow rate samplers: laboratory study.
    Lee T; Lee EG; Kim SW; Chisholm WP; Kashon M; Harper M
    Ann Occup Hyg; 2012 May; 56(4):413-25. PubMed ID: 22186376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the approach to respirable quartz exposure control in U.S. coal mines.
    Joy GJ
    J Occup Environ Hyg; 2012; 9(2):65-8. PubMed ID: 22181563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct-on-Filter α-Quartz Estimation in Respirable Coal Mine Dust Using Transmission Fourier Transform Infrared Spectrometry and Partial Least Squares Regression.
    Miller AL; Weakley AT; Griffiths PR; Cauda EG; Bayman S
    Appl Spectrosc; 2017 May; 71(5):1014-1024. PubMed ID: 27645724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A critique of MSHA procedures for determination of permissible respirable coal mine dust containing free silica.
    Corn M; Breysse P; Hall T; Chen G; Risby T; Swift DL
    Am Ind Hyg Assoc J; 1985 Jan; 46(1):4-8. PubMed ID: 2992262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Equivalency of a personal dust monitor to the current United States coal mine respirable dust sampler.
    Page SJ; Volkwein JC; Vinson RP; Joy GJ; Mischler SE; Tuchman DP; McWilliams LJ
    J Environ Monit; 2008 Jan; 10(1):96-101. PubMed ID: 18175022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of coal mine dust size distributions and calibration standards for crystalline silica analysis.
    Page SJ
    AIHA J (Fairfax, Va); 2003; 64(1):30-9. PubMed ID: 12570393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Respirable concrete dust--silicosis hazard in the construction industry.
    Linch KD
    Appl Occup Environ Hyg; 2002 Mar; 17(3):209-21. PubMed ID: 11871757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sampling and analysis method for measuring airborne coal dust mass in mixtures with limestone (rock) dust.
    Barone TL; Patts JR; Janisko SJ; Colinet JF; Patts LD; Beck TW; Mischler SE
    J Occup Environ Hyg; 2016; 13(4):284-92. PubMed ID: 26618374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.