These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 26375710)

  • 1. Nanooptics of Plasmonic Nanomatryoshkas: Shrinking the Size of a Core-Shell Junction to Subnanometer.
    Lin L; Zapata M; Xiong M; Liu Z; Wang S; Xu H; Borisov AG; Gu H; Nordlander P; Aizpurua J; Ye J
    Nano Lett; 2015 Oct; 15(10):6419-28. PubMed ID: 26375710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron Transport Across Plasmonic Molecular Nanogaps Interrogated with Surface-Enhanced Raman Scattering.
    Lin L; Zhang Q; Li X; Qiu M; Jiang X; Jin W; Gu H; Lei DY; Ye J
    ACS Nano; 2018 Jul; 12(7):6492-6503. PubMed ID: 29924592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical properties of plasmonic core-shell nanomatryoshkas: a quantum hydrodynamic analysis.
    Khalid M; Sala FD; Ciracì C
    Opt Express; 2018 Jun; 26(13):17322-17334. PubMed ID: 30119545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Investigation on the Use of Au@SiO
    Eldridge BK; Gomrok S; Barr JW; Chaffin EA; Fielding L; Sachs C; Stickels K; Williams P; Wang Y
    Nanomaterials (Basel); 2023 Nov; 13(21):. PubMed ID: 37947737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Tunnel Junction-Controlled High-Order Charge Transfer Plasmon and Fano Resonances.
    Cui X; Qin F; Lai Y; Wang H; Shao L; Chen H; Wang J; Lin HQ
    ACS Nano; 2018 Dec; 12(12):12541-12550. PubMed ID: 30462918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observation of quantum tunneling between two plasmonic nanoparticles.
    Scholl JA; García-Etxarri A; Koh AL; Dionne JA
    Nano Lett; 2013 Feb; 13(2):564-9. PubMed ID: 23245286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable Subnanometer Gaps in Self-Assembled Monolayer Gold Nanoparticle Superlattices Enabling Strong Plasmonic Field Confinement.
    Lu B; Vegso K; Micky S; Ritz C; Bodik M; Fedoryshyn YM; Siffalovic P; Stemmer A
    ACS Nano; 2023 Jul; 17(13):12774-12787. PubMed ID: 37354449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing the quantum tunneling limit of plasmonic enhancement by third harmonic generation.
    Hajisalem G; Nezami MS; Gordon R
    Nano Lett; 2014 Nov; 14(11):6651-4. PubMed ID: 25322471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extending Plasmonic Enhancement Limit with Blocked Electron Tunneling by Monolayer Hexagonal Boron Nitride.
    Chen S; Li P; Zhang C; Wu W; Zhou G; Zhang C; Weng S; Ding T; Wu DY; Yang L
    Nano Lett; 2023 Jun; 23(12):5445-5452. PubMed ID: 36995130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectral signatures of charge transfer in assemblies of molecularly-linked plasmonic nanoparticles.
    Lerch S; Reinhard BM
    Int J Mod Phys B; 2017 Sep; 31(24):. PubMed ID: 29391660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanooptics of molecular-shunted plasmonic nanojunctions.
    Benz F; Tserkezis C; Herrmann LO; de Nijs B; Sanders A; Sigle DO; Pukenas L; Evans SD; Aizpurua J; Baumberg JJ
    Nano Lett; 2015 Jan; 15(1):669-74. PubMed ID: 25494169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum effects in the optical response of extended plasmonic gaps: validation of the quantum corrected model in core-shell nanomatryushkas.
    Zapata M; Camacho Beltrán ÁS; Borisov AG; Aizpurua J
    Opt Express; 2015 Mar; 23(6):8134-49. PubMed ID: 25837151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonic nanosnowmen with a conductive junction as highly tunable nanoantenna structures and sensitive, quantitative and multiplexable surface-enhanced Raman scattering probes.
    Lee JH; You MH; Kim GH; Nam JM
    Nano Lett; 2014 Nov; 14(11):6217-25. PubMed ID: 25275930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum effects and nonlocality in strongly coupled plasmonic nanowire dimers.
    Teperik TV; Nordlander P; Aizpurua J; Borisov AG
    Opt Express; 2013 Nov; 21(22):27306-25. PubMed ID: 24216954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering.
    Zhu W; Crozier KB
    Nat Commun; 2014 Oct; 5():5228. PubMed ID: 25311008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extremely large third-order nonlinear optical effects caused by electron transport in quantum plasmonic metasurfaces with subnanometer gaps.
    Takeuchi T; Yabana K
    Sci Rep; 2020 Dec; 10(1):21270. PubMed ID: 33277512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elevating Surface-Enhanced Infrared Absorption with Quantum Mechanical Effects of Plasmonic Nanocavities.
    Huang G; Liu K; Shi G; Guo Q; Li X; Liu Z; Ma W; Wang T
    Nano Lett; 2022 Aug; 22(15):6083-6090. PubMed ID: 35866846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic Near-Field Localization of Silver Core-Shell Nanoparticle Assemblies via Wet Chemistry Nanogap Engineering.
    Asapu R; Ciocarlan RG; Claes N; Blommaerts N; Minjauw M; Ahmad T; Dendooven J; Cool P; Bals S; Denys S; Detavernier C; Lenaerts S; Verbruggen SW
    ACS Appl Mater Interfaces; 2017 Nov; 9(47):41577-41585. PubMed ID: 29119785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using the thickness of graphene to template lateral subnanometer gaps between gold nanostructures.
    Zaretski AV; Marin BC; Moetazedi H; Dill TJ; Jibril L; Kong C; Tao AR; Lipomi DJ
    Nano Lett; 2015 Jan; 15(1):635-40. PubMed ID: 25555061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inelastic Light Scattering in the Vicinity of a Single-Atom Quantum Point Contact in a Plasmonic Picocavity.
    Liu S; Bonafe FP; Appel H; Rubio A; Wolf M; Kumagai T
    ACS Nano; 2023 Jun; 17(11):10172-10180. PubMed ID: 37183801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.