These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 26376011)
1. Fitting the two-compartment model in DCE-MRI by linear inversion. Flouri D; Lesnic D; Sourbron SP Magn Reson Med; 2016 Sep; 76(3):998-1006. PubMed ID: 26376011 [TBL] [Abstract][Full Text] [Related]
2. Vastly accelerated linear least-squares fitting with numerical optimization for dual-input delay-compensated quantitative liver perfusion mapping. Jafari R; Chhabra S; Prince MR; Wang Y; Spincemaille P Magn Reson Med; 2018 Apr; 79(4):2415-2421. PubMed ID: 28833534 [TBL] [Abstract][Full Text] [Related]
3. Comparison of linear and nonlinear implementation of the compartmental tissue uptake model for dynamic contrast-enhanced MRI. Kallehauge JF; Sourbron S; Irving B; Tanderup K; Schnabel JA; Chappell MA Magn Reson Med; 2017 Jun; 77(6):2414-2423. PubMed ID: 27605429 [TBL] [Abstract][Full Text] [Related]
4. Parameter estimation using weighted total least squares in the two-compartment exchange model. Garpebring A; Löfstedt T Magn Reson Med; 2018 Jan; 79(1):561-567. PubMed ID: 28349618 [TBL] [Abstract][Full Text] [Related]
5. Comparison of analytical and numerical analysis of the reference region model for DCE-MRI. Lee J; Cárdenas-Rodríguez J; Pagel MD; Platt S; Kent M; Zhao Q Magn Reson Imaging; 2014 Sep; 32(7):845-53. PubMed ID: 24925838 [TBL] [Abstract][Full Text] [Related]
6. Reproducibility of the aortic input function (AIF) derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) of the kidneys in a volunteer study. Mendichovszky IA; Cutajar M; Gordon I Eur J Radiol; 2009 Sep; 71(3):576-81. PubMed ID: 19004588 [TBL] [Abstract][Full Text] [Related]
7. Improving the arterial input function in dynamic contrast enhanced MRI by fitting the signal in the complex plane. Simonis FF; Sbrizzi A; Beld E; Lagendijk JJ; van den Berg CA Magn Reson Med; 2016 Oct; 76(4):1236-45. PubMed ID: 26525012 [TBL] [Abstract][Full Text] [Related]
9. Robust and efficient pharmacokinetic parameter non-linear least squares estimation for dynamic contrast enhanced MRI of the prostate. Kargar S; Borisch EA; Froemming AT; Kawashima A; Mynderse LA; Stinson EG; Trzasko JD; Riederer SJ Magn Reson Imaging; 2018 May; 48():50-61. PubMed ID: 29278764 [TBL] [Abstract][Full Text] [Related]
10. Modified dixon-based renal dynamic contrast-enhanced MRI facilitates automated registration and perfusion analysis. de Boer A; Leiner T; Vink EE; Blankestijn PJ; van den Berg CAT Magn Reson Med; 2018 Jul; 80(1):66-76. PubMed ID: 29134673 [TBL] [Abstract][Full Text] [Related]
11. Optimization of saturation-recovery dynamic contrast-enhanced MRI acquisition protocol: monte carlo simulation approach demonstrated with gadolinium MR renography. Zhang JL; Conlin CC; Carlston K; Xie L; Kim D; Morrell G; Morton K; Lee VS NMR Biomed; 2016 Jul; 29(7):969-77. PubMed ID: 27200499 [TBL] [Abstract][Full Text] [Related]
12. Improved accuracy and precision of tracer kinetic parameters by joint fitting to variable flip angle and dynamic contrast enhanced MRI data. Dickie BR; Banerji A; Kershaw LE; McPartlin A; Choudhury A; West CM; Rose CJ Magn Reson Med; 2016 Oct; 76(4):1270-81. PubMed ID: 26480291 [TBL] [Abstract][Full Text] [Related]
13. Generation of parametric image of regional myocardial blood flow using H(2)(15)O dynamic PET and a linear least-squares method. Lee JS; Lee DS; Ahn JY; Yeo JS; Cheon GJ; Kim SK; Park KS; Chung JK; Lee MC J Nucl Med; 2005 Oct; 46(10):1687-95. PubMed ID: 16204719 [TBL] [Abstract][Full Text] [Related]
14. Comparative assessment of linear least-squares, nonlinear least-squares, and Patlak graphical method for regional and local quantitative tracer kinetic modeling in cerebral dynamic Ben Bouallègue F; Vauchot F; Mariano-Goulart D Med Phys; 2019 Mar; 46(3):1260-1271. PubMed ID: 30592540 [TBL] [Abstract][Full Text] [Related]
15. A linear algorithm of the reference region model for DCE-MRI is robust and relaxes requirements for temporal resolution. Cárdenas-Rodríguez J; Howison CM; Pagel MD Magn Reson Imaging; 2013 May; 31(4):497-507. PubMed ID: 23228309 [TBL] [Abstract][Full Text] [Related]
16. Heuristic linear mapping of physiological parameters in dynamic contrast-enhanced MRI without T₁ measurement and contrast agent concentration. Yuan J; Chow SK; King AD; Yeung DK J Magn Reson Imaging; 2012 Apr; 35(4):916-25. PubMed ID: 22095582 [TBL] [Abstract][Full Text] [Related]
17. Investigation and optimization of parameter accuracy in dynamic contrast-enhanced MRI. Cheng HL J Magn Reson Imaging; 2008 Sep; 28(3):736-43. PubMed ID: 18777534 [TBL] [Abstract][Full Text] [Related]
18. Efficient method for calculating kinetic parameters using T1-weighted dynamic contrast-enhanced magnetic resonance imaging. Murase K Magn Reson Med; 2004 Apr; 51(4):858-62. PubMed ID: 15065262 [TBL] [Abstract][Full Text] [Related]
19. A fast method of generating pharmacokinetic maps from dynamic contrast-enhanced images of the breast. Martel AL Med Image Comput Comput Assist Interv; 2006; 9(Pt 2):101-8. PubMed ID: 17354761 [TBL] [Abstract][Full Text] [Related]
20. Quantitative analysis of dynamic contrast enhanced MRI for assessment of bowel inflammation in Crohn's disease pilot study. Oto A; Fan X; Mustafi D; Jansen SA; Karczmar GS; Rubin DT; Kayhan A Acad Radiol; 2009 Oct; 16(10):1223-30. PubMed ID: 19524458 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]