These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 26376049)

  • 21. Neuroimmune interactions and kidney disease.
    Hasegawa S; Inoue T; Inagi R
    Kidney Res Clin Pract; 2019 Sep; 38(3):282-294. PubMed ID: 31422643
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Apical splenic nerve electrical stimulation discloses an anti-inflammatory pathway relying on adrenergic and nicotinic receptors in myeloid cells.
    Guyot M; Simon T; Panzolini C; Ceppo F; Daoudlarian D; Murris E; Macia E; Abélanet S; Sridhar A; Vervoordeldonk MJ; Glaichenhaus N; Blancou P
    Brain Behav Immun; 2019 Aug; 80():238-246. PubMed ID: 30885844
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultrasound for the treatment of acute kidney injury and other inflammatory conditions: a promising path toward noninvasive neuroimmune regulation.
    Cai J; Nash WT; Okusa MD
    Am J Physiol Renal Physiol; 2020 Jul; 319(1):F125-F138. PubMed ID: 32508112
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neuroimmune perspectives in sepsis.
    Ulloa L; Deitch EA
    Crit Care; 2009; 13(2):133. PubMed ID: 19439052
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nonpharmacological, Biomechanical Approaches to Control Inflammation in Acute Kidney Injury.
    Tanaka S; Inoue T; Hossack JA; Okusa MD
    Nephron; 2017; 137(4):277-281. PubMed ID: 28595190
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neuroimmune Communication in the Kidney.
    Nakamura Y; Inoue T
    JMA J; 2020 Jul; 3(3):164-174. PubMed ID: 33150250
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impaired vagus-mediated immunosuppression in microsomal prostaglandin E synthase-1 deficient mice.
    Le Maître E; Revathikumar P; Idborg H; Raouf J; Korotkova M; Jakobsson PJ; Lampa J
    Prostaglandins Other Lipid Mediat; 2015 Sep; 121(Pt B):155-62. PubMed ID: 26001880
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pharmacological potentiation of the efferent vagus nerve attenuates blood pressure and renal injury in a murine model of systemic lupus erythematosus.
    Pham GS; Wang LA; Mathis KW
    Am J Physiol Regul Integr Comp Physiol; 2018 Dec; 315(6):R1261-R1271. PubMed ID: 30332305
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The cholinergic anti-inflammatory pathway: a missing link in neuroimmunomodulation.
    Pavlov VA; Wang H; Czura CJ; Friedman SG; Tracey KJ
    Mol Med; 2003; 9(5-8):125-34. PubMed ID: 14571320
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia.
    Rosas-Ballina M; Ochani M; Parrish WR; Ochani K; Harris YT; Huston JM; Chavan S; Tracey KJ
    Proc Natl Acad Sci U S A; 2008 Aug; 105(31):11008-13. PubMed ID: 18669662
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of vagus nerve signaling in CNI-1493-mediated suppression of acute inflammation.
    Borovikova LV; Ivanova S; Nardi D; Zhang M; Yang H; Ombrellino M; Tracey KJ
    Auton Neurosci; 2000 Dec; 85(1-3):141-7. PubMed ID: 11189021
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vagus nerve cholinergic circuitry to the liver and the gastrointestinal tract in the neuroimmune communicatome.
    Metz CN; Pavlov VA
    Am J Physiol Gastrointest Liver Physiol; 2018 Nov; 315(5):G651-G658. PubMed ID: 30001146
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The cholinergic anti-inflammatory pathway: a critical review.
    Martelli D; McKinley MJ; McAllen RM
    Auton Neurosci; 2014 May; 182():65-9. PubMed ID: 24411268
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Anti-inflammatory properties of the vagus nerve: potential therapeutic implications of vagus nerve stimulation.
    Bonaz B; Sinniger V; Pellissier S
    J Physiol; 2016 Oct; 594(20):5781-5790. PubMed ID: 27059884
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Vagal-immune interactions involved in cholinergic anti-inflammatory pathway.
    Zila I; Mokra D; Kopincova J; Kolomaznik M; Javorka M; Calkovska A
    Physiol Res; 2017 Sep; 66(Suppl 2):S139-S145. PubMed ID: 28937230
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Vagal Modulation of the Inflammatory Response in Sepsis.
    Wang DW; Yin YM; Yao YM
    Int Rev Immunol; 2016 Sep; 35(5):415-433. PubMed ID: 27128144
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Research progress of exploring the treatment of sepsis based on cholinergic anti-inflammatory pathway].
    Hu J; Liu S; Ma T
    Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2021 Jan; 33(1):122-125. PubMed ID: 33565416
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Upregulation of miR-21 by Ghrelin Ameliorates Ischemia/Reperfusion-Induced Acute Kidney Injury by Inhibiting Inflammation and Cell Apoptosis.
    Zhang W; Shu L
    DNA Cell Biol; 2016 Aug; 35(8):417-25. PubMed ID: 27152763
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [The interface between the immune system and autonomic nervous system].
    Nakane S; Mukaino A; Ando Y
    Nihon Rinsho Meneki Gakkai Kaishi; 2017; 40(5):352-360. PubMed ID: 29238017
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The vagal innervation of the gut and immune homeostasis.
    Matteoli G; Boeckxstaens GE
    Gut; 2013 Aug; 62(8):1214-22. PubMed ID: 23023166
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.