BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 26376462)

  • 1. Textual inference for eligibility criteria resolution in clinical trials.
    Shivade C; Hebert C; Lopetegui M; de Marneffe MC; Fosler-Lussier E; Lai AM
    J Biomed Inform; 2015 Dec; 58 Suppl(Suppl):S211-S218. PubMed ID: 26376462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supporting patient screening to identify suitable clinical trials.
    Bucur A; Van Leeuwen J; Chen NZ; Claerhout B; De Schepper K; Perez-Rey D; Alonso-Calvo R; Pugliano L; Saini K
    Stud Health Technol Inform; 2014; 205():823-7. PubMed ID: 25160302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Text Mining of the Electronic Health Record: An Information Extraction Approach for Automated Identification and Subphenotyping of HFpEF Patients for Clinical Trials.
    Jonnalagadda SR; Adupa AK; Garg RP; Corona-Cox J; Shah SJ
    J Cardiovasc Transl Res; 2017 Jun; 10(3):313-321. PubMed ID: 28585184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protocol feasibility workflow using an automated multi-country patient cohort system.
    Soto-Rey I; Trinczek B; Karakoyun T; Dugas M; Fritz F
    Stud Health Technol Inform; 2014; 205():985-9. PubMed ID: 25160335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Query engine optimization for the EHR4CR protocol feasibility scenario.
    Soto-Rey I; Bache R; Dugas M; Fritz F
    Stud Health Technol Inform; 2013; 192():1080. PubMed ID: 23920854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic Selection of Clinical Trials Based on A Semantic Web Approach.
    Cuggia M; Campillo-Gimenez B; Bouzille G; Besana P; Jouini W; Dufour JC; Zekri O; Gibaud I; Garde C; Duvauferier R
    Stud Health Technol Inform; 2015; 216():564-8. PubMed ID: 26262114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic data source identification for clinical trial eligibility criteria resolution.
    Shivade C; Hebert C; Regan K; Fosler-Lussier E; Lai AM
    AMIA Annu Symp Proc; 2016; 2016():1149-1158. PubMed ID: 28269912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recruit--An Ontology Based Information Retrieval System for Clinical Trials Recruitment.
    PatrĂ£o DF; Oleynik M; Massicano F; Morassi Sasso A
    Stud Health Technol Inform; 2015; 216():534-8. PubMed ID: 26262108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increasing the efficiency of trial-patient matching: automated clinical trial eligibility pre-screening for pediatric oncology patients.
    Ni Y; Wright J; Perentesis J; Lingren T; Deleger L; Kaiser M; Kohane I; Solti I
    BMC Med Inform Decis Mak; 2015 Apr; 15():28. PubMed ID: 25881112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Natural Language Processing Technologies in Radiology Research and Clinical Applications.
    Cai T; Giannopoulos AA; Yu S; Kelil T; Ripley B; Kumamaru KK; Rybicki FJ; Mitsouras D
    Radiographics; 2016; 36(1):176-91. PubMed ID: 26761536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semantic query generation from eligibility criteria in clinical trials.
    Patel CO; Cimino JJ
    AMIA Annu Symp Proc; 2007 Oct; ():1070. PubMed ID: 18694168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of eligibility criteria from ClinicalTrials.gov.
    Doods J; Dugas M; Fritz F
    Stud Health Technol Inform; 2014; 205():853-7. PubMed ID: 25160308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using natural language processing to identify problem usage of prescription opioids.
    Carrell DS; Cronkite D; Palmer RE; Saunders K; Gross DE; Masters ET; Hylan TR; Von Korff M
    Int J Med Inform; 2015 Dec; 84(12):1057-64. PubMed ID: 26456569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Artificial Intelligence Tool for Optimizing Eligibility Screening for Clinical Trials in a Large Community Cancer Center.
    Beck JT; Rammage M; Jackson GP; Preininger AM; Dankwa-Mullan I; Roebuck MC; Torres A; Holtzen H; Coverdill SE; Williamson MP; Chau Q; Rhee K; Vinegra M
    JCO Clin Cancer Inform; 2020 Jan; 4():50-59. PubMed ID: 31977254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mining heart disease risk factors in clinical text with named entity recognition and distributional semantic models.
    Urbain J
    J Biomed Inform; 2015 Dec; 58 Suppl(Suppl):S143-S149. PubMed ID: 26305514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A European inventory of data elements for patient recruitment.
    Doods J; Lafitte C; Ulliac-Sagnes N; Proeve J; Botteri F; Walls R; Sykes A; Dugas M; Fritz F
    Stud Health Technol Inform; 2015; 210():506-10. PubMed ID: 25991199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ClinicalTrials.gov as a data source for semi-automated point-of-care trial eligibility screening.
    Pfiffner PB; Oh J; Miller TA; Mandl KD
    PLoS One; 2014; 9(10):e111055. PubMed ID: 25334031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic extraction of numerical values from unstructured data in EHRs.
    Bigeard E; Jouhet V; Mougin F; Thiessard F; Grabar N
    Stud Health Technol Inform; 2015; 210():50-4. PubMed ID: 25991100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated Matching of Patients to Clinical Trials: A Patient-Centric Natural Language Processing Approach for Pediatric Leukemia.
    Kaskovich S; Wyatt KD; Oliwa T; Graglia L; Furner B; Lee J; Mayampurath A; Volchenboum SL
    JCO Clin Cancer Inform; 2023 Jul; 7():e2300009. PubMed ID: 37428994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining glass box and black box evaluations in the identification of heart disease risk factors and their temporal relations from clinical records.
    Grouin C; Moriceau V; Zweigenbaum P
    J Biomed Inform; 2015 Dec; 58 Suppl(Suppl):S133-S142. PubMed ID: 26142870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.