BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 26376481)

  • 1. Ketocarotenoid Production in Soybean Seeds through Metabolic Engineering.
    Pierce EC; LaFayette PR; Ortega MA; Joyce BL; Kopsell DA; Parrott WA
    PLoS One; 2015; 10(9):e0138196. PubMed ID: 26376481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pathway engineering of Brassica napus seeds using multiple key enzyme genes involved in ketocarotenoid formation.
    Fujisawa M; Takita E; Harada H; Sakurai N; Suzuki H; Ohyama K; Shibata D; Misawa N
    J Exp Bot; 2009; 60(4):1319-32. PubMed ID: 19204032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstruction of the astaxanthin biosynthesis pathway in rice endosperm reveals a metabolic bottleneck at the level of endogenous β-carotene hydroxylase activity.
    Bai C; Berman J; Farre G; Capell T; Sandmann G; Christou P; Zhu C
    Transgenic Res; 2017 Feb; 26(1):13-23. PubMed ID: 27567632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of astaxanthin and its intermediates through cloning and genetic transformation of β-carotene ketolase in Haematococcus pluvialis.
    Kathiresan S; Chandrashekar A; Ravishankar GA; Sarada R
    J Biotechnol; 2015 Feb; 196-197():33-41. PubMed ID: 25612872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering of tomato for the sustainable production of ketocarotenoids and its evaluation in aquaculture feed.
    Nogueira M; Enfissi EMA; Martínez Valenzuela ME; Menard GN; Driller RL; Eastmond PJ; Schuch W; Sandmann G; Fraser PD
    Proc Natl Acad Sci U S A; 2017 Oct; 114(41):10876-10881. PubMed ID: 28973873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of ketocarotenoids in the seed of Arabidopsis thaliana.
    Stålberg K; Lindgren O; Ek B; Höglund AS
    Plant J; 2003 Dec; 36(6):771-9. PubMed ID: 14675443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic engineering of novel ketocarotenoid production in carrot plants.
    Jayaraj J; Devlin R; Punja Z
    Transgenic Res; 2008 Aug; 17(4):489-501. PubMed ID: 17682834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coordinate expression of multiple bacterial carotenoid genes in canola leading to altered carotenoid production.
    Ravanello MP; Ke D; Alvarez J; Huang B; Shewmaker CK
    Metab Eng; 2003 Oct; 5(4):255-63. PubMed ID: 14642353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modern Breeding and Biotechnological Approaches to Enhance Carotenoid Accumulation in Seeds.
    Federico ML; Schmidt MA
    Subcell Biochem; 2016; 79():345-58. PubMed ID: 27485229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transgenic soya bean seeds accumulating β-carotene exhibit the collateral enhancements of oleate and protein content traits.
    Schmidt MA; Parrott WA; Hildebrand DF; Berg RH; Cooksey A; Pendarvis K; He Y; McCarthy F; Herman EM
    Plant Biotechnol J; 2015 May; 13(4):590-600. PubMed ID: 25400247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering an oilseed crop for hyper-accumulation of carotenoids in the seeds without using a traditional marker gene.
    He MX; Wang JL; Lin YY; Huang JC; Liu AZ; Chen F
    Plant Cell Rep; 2022 Aug; 41(8):1751-1761. PubMed ID: 35748890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enrichment of provitamin A content in wheat (Triticum aestivum L.) by introduction of the bacterial carotenoid biosynthetic genes CrtB and CrtI.
    Wang C; Zeng J; Li Y; Hu W; Chen L; Miao Y; Deng P; Yuan C; Ma C; Chen X; Zang M; Wang Q; Li K; Chang J; Wang Y; Yang G; He G
    J Exp Bot; 2014 Jun; 65(9):2545-56. PubMed ID: 24692648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering of ketocarotenoid biosynthesis in higher plants.
    Zhu C; Naqvi S; Capell T; Christou P
    Arch Biochem Biophys; 2009 Mar; 483(2):182-90. PubMed ID: 18992217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic Engineering of Escherichia coli for Producing Astaxanthin as the Predominant Carotenoid.
    Lu Q; Bu YF; Liu JZ
    Mar Drugs; 2017 Sep; 15(10):. PubMed ID: 28937591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enrichment of carotenoids in flaxseed by introducing a bacterial phytoene synthase gene.
    Fujisawa M; Misawa N
    Methods Mol Biol; 2010; 643():201-11. PubMed ID: 20552453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloning and expression in Escherichia coli of the gene encoding beta-C-4-oxygenase, that converts beta-carotene to the ketocarotenoid canthaxanthin in Haematococcus pluvialis.
    Lotan T; Hirschberg J
    FEBS Lett; 1995 May; 364(2):125-8. PubMed ID: 7750556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of transplastomic lettuce (Lactuca sativa) dominantly producing astaxanthin fatty acid esters and detailed chemical analysis of generated carotenoids.
    Harada H; Maoka T; Osawa A; Hattan J; Kanamoto H; Shindo K; Otomatsu T; Misawa N
    Transgenic Res; 2014 Apr; 23(2):303-15. PubMed ID: 24287848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enrichment of carotenoids in flaxseed (Linum usitatissimum) by metabolic engineering with introduction of bacterial phytoene synthase gene crtB.
    Fujisawa M; Watanabe M; Choi SK; Teramoto M; Ohyama K; Misawa N
    J Biosci Bioeng; 2008 Jun; 105(6):636-41. PubMed ID: 18640603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic modification of the soybean to enhance the β-carotene content through seed-specific expression.
    Kim MJ; Kim JK; Kim HJ; Pak JH; Lee JH; Kim DH; Choi HK; Jung HW; Lee JD; Chung YS; Ha SH
    PLoS One; 2012; 7(10):e48287. PubMed ID: 23118971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of a fusion enzyme for astaxanthin formation and its characterisation in microbial and plant hosts: A new tool for engineering ketocarotenoids.
    Nogueira M; Enfissi EMA; Welsch R; Beyer P; Zurbriggen MD; Fraser PD
    Metab Eng; 2019 Mar; 52():243-252. PubMed ID: 30578862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.