These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 26376605)

  • 1. Tunability of exchange bias in Ni@NiO core-shell nanoparticles obtained by sequential layer deposition.
    Spadaro MC; D'Addato S; Luches P; Valeri S; Grillo V; Rotunno E; Roldan MA; Pennycook SJ; Ferretti AM; Capetti E; Ponti A
    Nanotechnology; 2015 Oct; 26(40):405704. PubMed ID: 26376605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and structural and magnetic characterization of Ni(core)/NiO(shell) nanoparticles.
    Johnston-Peck AC; Wang J; Tracy JB
    ACS Nano; 2009 May; 3(5):1077-84. PubMed ID: 19361203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic properties of monodispersed Ni/NiO core-shell nanoparticles.
    Seto T; Akinaga H; Takano F; Koga K; Orii T; Hirasawa M
    J Phys Chem B; 2005 Jul; 109(28):13403-5. PubMed ID: 16852675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphology-controlled synthesis of monodispersed graphitic carbon coated core/shell structured Ni/NiO nanoparticles with enhanced magnetoresistance.
    Patange M; Biswas S; Yadav AK; Jha SN; Bhattacharyya D
    Phys Chem Chem Phys; 2015 Dec; 17(48):32398-412. PubMed ID: 26585235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Size-dependent nanoscale kirkendall effect during the oxidation of nickel nanoparticles.
    Railsback JG; Johnston-Peck AC; Wang J; Tracy JB
    ACS Nano; 2010 Apr; 4(4):1913-20. PubMed ID: 20361781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scrutinizing the role of size reduction on the exchange bias and dynamic magnetic behavior in NiO nanoparticles.
    Rinaldi-Montes N; Gorria P; Martínez-Blanco D; Fuertes AB; Barquín LF; Puente-Orench I; Blanco JA
    Nanotechnology; 2015 Jul; 26(30):305705. PubMed ID: 26159463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Doping effect on the local structure of metamagnetic Co doped Ni/NiO:GO core-shell nanoparticles using X-ray absorption spectroscopy and the pair distribution function.
    Gawai UP; Gaikwad DK; Bodke MR; Khawal HA; Pandey KK; Yadav AK; Jha SN; Bhattacharyya D; Dole BN
    Phys Chem Chem Phys; 2019 Jan; 21(3):1294-1307. PubMed ID: 30570634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interplay between microstructure and magnetism in NiO nanoparticles: breakdown of the antiferromagnetic order.
    Rinaldi-Montes N; Gorria P; Martínez-Blanco D; Fuertes AB; Fernández Barquín L; Rodríguez Fernández J; de Pedro I; Fdez-Gubieda ML; Alonso J; Olivi L; Aquilanti G; Blanco JA
    Nanoscale; 2014 Jan; 6(1):457-65. PubMed ID: 24217131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating Exchange Bias and Coercivity in Fe₃O₄-γ-Fe₂O₃ Core-Shell Nanoparticles of Fixed Core Diameter and Variable Shell Thicknesses.
    Obaidat IM; Nayek C; Manna K; Bhattacharjee G; Al-Omari IA; Gismelseed A
    Nanomaterials (Basel); 2017 Nov; 7(12):. PubMed ID: 29186824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward Optimized Radial Modulation of the Space-Charge Region in One-Dimensional SnO
    Raza MH; Kaur N; Comini E; Pinna N
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4594-4606. PubMed ID: 31933357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gold/Wüstite core-shell nanoparticles: suppression of iron oxidation through the electron-transfer phenomenon.
    Singh P; Mott DM; Maenosono S
    Chemphyschem; 2013 Oct; 14(14):3278-83. PubMed ID: 23913505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From core/shell to hollow Fe/γ-Fe₂O₃ nanoparticles: evolution of the magnetic behavior.
    Nemati Z; Khurshid H; Alonso J; Phan MH; Mukherjee P; Srikanth H
    Nanotechnology; 2015 Oct; 26(40):405705. PubMed ID: 26376675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and stability of nickel/nickel oxide core-shell nanoparticles.
    D'Addato S; Grillo V; Altieri S; Tondi R; Valeri S; Frabboni S
    J Phys Condens Matter; 2011 May; 23(17):175003. PubMed ID: 21493971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning Exchange Coupling in NiO-Based Bimagnetic Heterostructured Nanocrystals.
    Shafe AA; Hossain MD; Mayanovic RA; Roddatis V; Benamara M
    ACS Appl Mater Interfaces; 2021 May; 13(20):24013-24023. PubMed ID: 34000195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic Cu-Ni (core-shell) nanoparticles in a one-pot reaction under microwave irradiation.
    Yamauchi T; Tsukahara Y; Sakata T; Mori H; Yanagida T; Kawai T; Wada Y
    Nanoscale; 2010 Apr; 2(4):515-23. PubMed ID: 20644753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microstructure of the native oxide layer on Ni and Cr-doped Ni nanoparticles.
    Wang CM; Baer DR; Bruemmer SM; Engelhard MH; Bowden ME; Sundararajan JA; Qiang Y
    J Nanosci Nanotechnol; 2011 Oct; 11(10):8488-97. PubMed ID: 22400213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of highly sensitive and selective Au@NiO yolk-shell nanoreactors for gas sensor applications.
    Rai P; Yoon JW; Jeong HM; Hwang SJ; Kwak CH; Lee JH
    Nanoscale; 2014 Jul; 6(14):8292-9. PubMed ID: 24933405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of magnetic nanocomposites and alloys from platinum-iron oxide core-shell nanoparticles.
    Teng X; Yang H
    Nanotechnology; 2005 Jul; 16(7):S554-61. PubMed ID: 21727477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface magnetic states of Ni nanochains modified by using different organic surfactants.
    Chen W; Zhou W; He L; Chen C; Guo L
    J Phys Condens Matter; 2010 Mar; 22(12):126003. PubMed ID: 21389501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution and magnetic characteristics of NiO-Ni(OH)2 core-shell nanostructures.
    Mahajan MB; Joy PA
    Phys Chem Chem Phys; 2013 Dec; 15(48):20808-12. PubMed ID: 24196209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.