BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 26376641)

  • 1. An integrated electromechanical-growth heart model for simulating cardiac therapies.
    Lee LC; Sundnes J; Genet M; Wenk JF; Wall ST
    Biomech Model Mechanobiol; 2016 Aug; 15(4):791-803. PubMed ID: 26376641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupled agent-based and finite-element models for predicting scar structure following myocardial infarction.
    Rouillard AD; Holmes JW
    Prog Biophys Mol Biol; 2014 Aug; 115(2-3):235-43. PubMed ID: 25009995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model-based design of mechanical therapies for myocardial infarction.
    Fomovsky GM; Macadangdang JR; Ailawadi G; Holmes JW
    J Cardiovasc Transl Res; 2011 Feb; 4(1):82-91. PubMed ID: 21088945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinical aspects of left ventricular diastolic function assessed by Doppler echocardiography following acute myocardial infarction.
    Poulsen SH
    Dan Med Bull; 2001 Nov; 48(4):199-210. PubMed ID: 11767125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural finite deformation model of the left ventricle during diastole and systole.
    Nevo E; Lanir Y
    J Biomech Eng; 1989 Nov; 111(4):342-9. PubMed ID: 2486374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bi-ventricular finite element model of right ventricle overload in the healthy rat heart.
    Masithulela F
    Biomed Mater Eng; 2016 Nov; 27(5):507-525. PubMed ID: 27885998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electromechanical feedback with reduced cellular connectivity alters electrical activity in an infarct injured left ventricle: a finite element model study.
    Wall ST; Guccione JM; Ratcliffe MB; Sundnes JS
    Am J Physiol Heart Circ Physiol; 2012 Jan; 302(1):H206-14. PubMed ID: 22058157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A finite element model of the human left ventricular systole.
    Dorri F; Niederer PF; Lunkenheimer PP
    Comput Methods Biomech Biomed Engin; 2006 Oct; 9(5):319-41. PubMed ID: 17132618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An elongation model of left ventricle deformation in diastole.
    Hu Y; Shi L; Du D; Parameswaran S; He Z
    Comput Methods Biomech Biomed Engin; 2013; 16(1):66-72. PubMed ID: 21916674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determinants of left ventricular shape change during filling.
    Holmes JW
    J Biomech Eng; 2004 Feb; 126(1):98-103. PubMed ID: 15171135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A two-phase finite element model of the diastolic left ventricle.
    Huyghe JM; van Campen DH; Arts T; Heethaar RM
    J Biomech; 1991; 24(7):527-38. PubMed ID: 1880137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relation of initial infarct size to extent of left ventricular remodeling in the year after acute myocardial infarction.
    Chareonthaitawee P; Christian TF; Hirose K; Gibbons RJ; Rumberger JA
    J Am Coll Cardiol; 1995 Mar; 25(3):567-73. PubMed ID: 7860898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of cardiac ventricular wall motion based on a three-dimensional electromechanical biventricular model.
    Xia L; Huo M; Wei Q; Liu F; Crozier S
    Phys Med Biol; 2005 Apr; 50(8):1901-17. PubMed ID: 15815103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling left ventricular dynamics with characteristic deformation modes.
    Hong BD; Moulton MJ; Secomb TW
    Biomech Model Mechanobiol; 2019 Dec; 18(6):1683-1696. PubMed ID: 31129860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of the elastic stiffness of human cardiac fibres after an apical infarction using finite element simulation.
    Córdova-Aquino J; Medellín-Castillo HI
    Proc Inst Mech Eng H; 2023 Nov; 237(11):1261-1274. PubMed ID: 37865815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Some factors that influence mechanical behavior of the left ventricle of the human heart in late systole: a feasibility study using finite element analysis.
    Yettram AL; Beecham MC; Gibson DG
    Heart Vessels; 1998; 13(6):290-301. PubMed ID: 10651171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Models of cardiac electromechanics based on individual hearts imaging data: image-based electromechanical models of the heart.
    Gurev V; Lee T; Constantino J; Arevalo H; Trayanova NA
    Biomech Model Mechanobiol; 2011 Jun; 10(3):295-306. PubMed ID: 20589408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of transmurally heterogeneous myocyte excitation-contraction coupling on canine left ventricular electromechanics.
    Campbell SG; Howard E; Aguado-Sierra J; Coppola BA; Omens JH; Mulligan LJ; McCulloch AD; Kerckhoffs RC
    Exp Physiol; 2009 May; 94(5):541-52. PubMed ID: 19251984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Outcomes of myocardial infarction hydrogel injection therapy in the human left ventricle dependent on injectate distribution.
    Miller R; Davies NH; Kortsmit J; Zilla P; Franz T
    Int J Numer Method Biomed Eng; 2013 Aug; 29(8):870-84. PubMed ID: 23640777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epicardial infarct repair with basic fibroblast growth factor-enhanced CorMatrix-ECM biomaterial attenuates postischemic cardiac remodeling.
    Mewhort HE; Turnbull JD; Meijndert HC; Ngu JM; Fedak PW
    J Thorac Cardiovasc Surg; 2014 May; 147(5):1650-9. PubMed ID: 24075463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.