BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 26376642)

  • 1. A novel strain energy relationship for red blood cell membrane skeleton based on spectrin stiffness and its application to micropipette deformation.
    Svetina S; Kokot G; Kebe TŠ; Žekš B; Waugh RE
    Biomech Model Mechanobiol; 2016 Jun; 15(3):745-58. PubMed ID: 26376642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-dependent elastic extensional RBC deformation by micropipette aspiration: redistribution of the spectrin network?
    Lerche D; Kozlov MM; Meier W
    Eur Biophys J; 1991; 19(6):301-9. PubMed ID: 1915155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stress-free state of the red blood cell membrane and the deformation of its skeleton.
    Svelc T; Svetina S
    Cell Mol Biol Lett; 2012 Jun; 17(2):217-27. PubMed ID: 22302416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dependence of the permanent deformation of red blood cell membranes on spectrin dimer-tetramer equilibrium: implication for permanent membrane deformation of irreversibly sickled cells.
    Liu SC; Derick LH; Palek J
    Blood; 1993 Jan; 81(2):522-8. PubMed ID: 8422468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The cooperative role of membrane skeleton and bilayer in the mechanical behaviour of red blood cells.
    Svetina S; Kuzman D; Waugh RE; Ziherl P; Zeks B
    Bioelectrochemistry; 2004 May; 62(2):107-13. PubMed ID: 15039011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elastic properties of the red blood cell membrane that determine echinocyte deformability.
    Kuzman D; Svetina S; Waugh RE; Zeks B
    Eur Biophys J; 2004 Feb; 33(1):1-15. PubMed ID: 13680208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectrin properties and the elasticity of the red blood cell membrane skeleton.
    Hansen J; Skalak R; Chien S; Hoger A
    Biorheology; 1997; 34(4-5):327-48. PubMed ID: 9578807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deformation behaviour of stomatocyte, discocyte and echinocyte red blood cell morphologies during optical tweezers stretching.
    Geekiyanage NM; Sauret E; Saha SC; Flower RL; Gu YT
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1827-1843. PubMed ID: 32100179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical properties of the red cell membrane skeleton: analysis of axisymmetric deformations.
    Markin VS; Kozlov MM
    J Theor Biol; 1988 Jul; 133(2):147-67. PubMed ID: 3236891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An elastic network model based on the structure of the red blood cell membrane skeleton.
    Hansen JC; Skalak R; Chien S; Hoger A
    Biophys J; 1996 Jan; 70(1):146-66. PubMed ID: 8770194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural determinants of the rigidity of the red cell membrane.
    Nash GB; Gratzer WB
    Biorheology; 1993; 30(5-6):397-407. PubMed ID: 8186406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Actin protofilament orientation in deformation of the erythrocyte membrane skeleton.
    Picart C; Dalhaimer P; Discher DE
    Biophys J; 2000 Dec; 79(6):2987-3000. PubMed ID: 11106606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Viscoelastic properties of red cell membrane in hereditary elliptocytosis.
    Chabanel A; Sung KL; Rapiejko J; Prchal JT; Palek J; Liu SC; Chien S
    Blood; 1989 Feb; 73(2):592-5. PubMed ID: 2917191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myosin IIA interacts with the spectrin-actin membrane skeleton to control red blood cell membrane curvature and deformability.
    Smith AS; Nowak RB; Zhou S; Giannetto M; Gokhin DS; Papoin J; Ghiran IC; Blanc L; Wan J; Fowler VM
    Proc Natl Acad Sci U S A; 2018 May; 115(19):E4377-E4385. PubMed ID: 29610350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Model of red blood cell membrane skeleton: electrical and mechanical properties.
    Kozlov MM; Markin VS
    J Theor Biol; 1987 Dec; 129(4):439-52. PubMed ID: 3455470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elasticity of the human red blood cell skeleton.
    Lenormand G; Hénon S; Richert A; Siméon J; Gallet F
    Biorheology; 2003; 40(1-3):247-51. PubMed ID: 12454412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinematics of red cell aspiration by fluorescence-imaged microdeformation.
    Discher DE; Mohandas N
    Biophys J; 1996 Oct; 71(4):1680-94. PubMed ID: 8889146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectrin, human erythrocyte shapes, and mechanochemical properties.
    Stokke BT; Mikkelsen A; Elgsaeter A
    Biophys J; 1986 Jan; 49(1):319-27. PubMed ID: 3955175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reductions of erythrocyte membrane viscoelastic coefficients reflect spectrin deficiencies in hereditary spherocytosis.
    Waugh RE; Agre P
    J Clin Invest; 1988 Jan; 81(1):133-41. PubMed ID: 3335631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of network topology on the elasticity of the red blood cell membrane skeleton.
    Hansen JC; Skalak R; Chien S; Hoger A
    Biophys J; 1997 May; 72(5):2369-81. PubMed ID: 9129841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.