These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 26376711)

  • 1. Understanding the growth and composition evolution of gold-seeded ternary InGaAs nanowires.
    Ameruddin AS; Caroff P; Tan HH; Jagadish C; Dubrovskii VG
    Nanoscale; 2015 Oct; 7(39):16266-72. PubMed ID: 26376711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling the morphology, composition and crystal structure in gold-seeded GaAs(1-x)Sb(x) nanowires.
    Yuan X; Caroff P; Wong-Leung J; Tan HH; Jagadish C
    Nanoscale; 2015 Mar; 7(11):4995-5003. PubMed ID: 25692266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct nucleation, morphology and compositional tuning of InAs
    Namazi L; Ghalamestani SG; Lehmann S; Zamani RR; Dick KA
    Nanotechnology; 2017 Apr; 28(16):165601. PubMed ID: 28346221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphology and composition controlled Ga(x)In(1-x)Sb nanowires: understanding ternary antimonide growth.
    Ghalamestani SG; Ek M; Ghasemi M; Caroff P; Johansson J; Dick KA
    Nanoscale; 2014 Jan; 6(2):1086-92. PubMed ID: 24296789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative Determination of How Growth Conditions Affect the 3D Composition of InGaAs Nanowires.
    Qu J; Chen H; Khan M; Yun F; Cui X; Ringer SP; Cairney JM; Zheng R
    Microsc Microanal; 2019 Apr; 25(2):524-531. PubMed ID: 30773161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulating Vapor-Liquid-Solid Growth of Au-Seeded InGaAs Nanowires.
    Mårtensson EK; Johansson J; Dick KA
    ACS Nanosci Au; 2022 Jun; 2(3):239-249. PubMed ID: 37101824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In(x)Ga(1-x)As nanowires with uniform composition, pure wurtzite crystal phase and taper-free morphology.
    Ameruddin AS; Fonseka HA; Caroff P; Wong-Leung J; Op het Veld RL; Boland JL; Johnston MB; Tan HH; Jagadish C
    Nanotechnology; 2015 May; 26(20):205604. PubMed ID: 25927420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D Atomic-Scale Insights into Anisotropic Core-Shell-Structured InGaAs Nanowires Grown by Metal-Organic Chemical Vapor Deposition.
    Qu J; Du S; Burgess T; Wang C; Cui X; Gao Q; Wang W; Tan HH; Liu H; Jagadish C; Zhang Y; Chen H; Khan M; Ringer S; Zheng R
    Adv Mater; 2017 Aug; 29(31):. PubMed ID: 28628253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monolithically Integrated InGaAs Nanowires on 3D Structured Silicon-on-Insulator as a New Platform for Full Optical Links.
    Kim H; Farrell AC; Senanayake P; Lee WJ; Huffaker DL
    Nano Lett; 2016 Mar; 16(3):1833-9. PubMed ID: 26901448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-Assembly Growth of In-Rich InGaAs Core-Shell Structured Nanowires with Remarkable Near-Infrared Photoresponsivity.
    Zhou C; Zhang XT; Zheng K; Chen PP; Lu W; Zou J
    Nano Lett; 2017 Dec; 17(12):7824-7830. PubMed ID: 29112426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and characterizations of ternary InGaAs nanowires by a two-step growth method for high-performance electronic devices.
    Hou JJ; Han N; Wang F; Xiu F; Yip S; Hui AT; Hung T; Ho JC
    ACS Nano; 2012 Apr; 6(4):3624-30. PubMed ID: 22443352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assembling your nanowire: an overview of composition tuning in ternary III-V nanowires.
    Ghasemi M; Leshchenko ED; Johansson J
    Nanotechnology; 2021 Feb; 32(7):072001. PubMed ID: 33091889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using seed particle composition to control structural and optical properties of GaN nanowires.
    Zhou X; Chesin J; Crawford S; Gradečak S
    Nanotechnology; 2012 Jul; 23(28):285603. PubMed ID: 22717518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facet-selective group-III incorporation in InGaAs template assisted selective epitaxy.
    Borg M; Gignac L; Bruley J; Malmgren A; Sant S; Convertino C; Rossell MD; Sousa M; Breslin C; Riel H; Moselund KE; Schmid H
    Nanotechnology; 2019 Feb; 30(8):084004. PubMed ID: 30524107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of nucleation conditions on diameter modulation of GaAs nanowires.
    Crawford SC; Ermez S; Haberfehlner G; Jones EJ; Gradečak S
    Nanotechnology; 2015 Jun; 26(22):225604. PubMed ID: 25969429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective-area vapour-liquid-solid growth of InP nanowires.
    Dalacu D; Kam A; Guy Austing D; Wu X; Lapointe J; Aers GC; Poole PJ
    Nanotechnology; 2009 Sep; 20(39):395602. PubMed ID: 19724116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complete composition tunability of InGaN nanowires using a combinatorial approach.
    Kuykendall T; Ulrich P; Aloni S; Yang P
    Nat Mater; 2007 Dec; 6(12):951-6. PubMed ID: 17965718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unexpected formation of a hierarchical structure in ternary InGaAs nanowires via "one-pot" growth.
    Zhou C; Zheng K; Chen PP; Lu W; Zou J
    Nanoscale; 2017 Nov; 9(43):16960-16967. PubMed ID: 29077119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Can antimonide-based nanowires form wurtzite crystal structure?
    Gorji Ghalamestani S; Lehmann S; Dick KA
    Nanoscale; 2016 Feb; 8(5):2778-86. PubMed ID: 26763161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal-seeded growth of III-V semiconductor nanowires: towards gold-free synthesis.
    Dick KA; Caroff P
    Nanoscale; 2014 Mar; 6(6):3006-21. PubMed ID: 24522389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.