BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 26377186)

  • 1. De novo production of six key grape aroma monoterpenes by a geraniol synthase-engineered S. cerevisiae wine strain.
    Pardo E; Rico J; Gil JV; Orejas M
    Microb Cell Fact; 2015 Sep; 14():136. PubMed ID: 26377186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering the Saccharomyces cerevisiae isoprenoid pathway for de novo production of aromatic monoterpenes in wine.
    Herrero O; Ramón D; Orejas M
    Metab Eng; 2008 Mar; 10(2):78-86. PubMed ID: 18155949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating the biochemical and fermentation attributes of Lachancea species and strains: Deciphering the potential contribution to wine chemical composition.
    Porter TJ; Divol B; Setati ME
    Int J Food Microbiol; 2019 Feb; 290():273-287. PubMed ID: 30412799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. De novo synthesis of monoterpenes by Saccharomyces cerevisiae wine yeasts.
    Carrau FM; Medina K; Boido E; Farina L; Gaggero C; Dellacassa E; Versini G; Henschke PA
    FEMS Microbiol Lett; 2005 Feb; 243(1):107-15. PubMed ID: 15668008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specificity of Ocimum basilicum geraniol synthase modified by its expression in different heterologous systems.
    Fischer MJ; Meyer S; Claudel P; Perrin M; Ginglinger JF; Gertz C; Masson JE; Werck-Reinhardt D; Hugueney P; Karst F
    J Biotechnol; 2013 Jan; 163(1):24-9. PubMed ID: 23108028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic analysis of geraniol metabolism during fermentation.
    Steyer D; Erny C; Claudel P; Riveill G; Karst F; Legras JL
    Food Microbiol; 2013 Apr; 33(2):228-34. PubMed ID: 23200656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of non-wine Saccharomyces yeasts and bottle aging on the release and generation of aromas in semi-synthetic Tempranillo wines.
    Pérez D; Denat M; Heras JM; Guillamón JM; Ferreira V; Querol A
    Int J Food Microbiol; 2022 Mar; 365():109554. PubMed ID: 35093767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic changes in monoterpene accumulation and biosynthesis during grape ripening in three Vitis vinifera L. cultivars.
    Yue X; Ren R; Ma X; Fang Y; Zhang Z; Ju Y
    Food Res Int; 2020 Nov; 137():109736. PubMed ID: 33233302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Whiff of Wine Yeast Innovation: Strategies for Enhancing Aroma Production by Yeast during Wine Fermentation.
    van Wyk N; Grossmann M; Wendland J; von Wallbrunn C; Pretorius IS
    J Agric Food Chem; 2019 Dec; 67(49):13496-13505. PubMed ID: 31724402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. QTL mapping of the production of wine aroma compounds by yeast.
    Steyer D; Ambroset C; Brion C; Claudel P; Delobel P; Sanchez I; Erny C; Blondin B; Karst F; Legras JL
    BMC Genomics; 2012 Oct; 13():573. PubMed ID: 23110365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monoterpene alcohols release and bioconversion by Saccharomyces species and hybrids.
    Gamero A; Manzanares P; Querol A; Belloch C
    Int J Food Microbiol; 2011 Jan; 145(1):92-7. PubMed ID: 21176987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of cluster zone leaf removal on monoterpene profiles of Sauvignon Blanc grapes and wines.
    Yue X; Ma X; Tang Y; Wang Y; Wu B; Jiao X; Zhang Z; Ju Y
    Food Res Int; 2020 May; 131():109028. PubMed ID: 32247455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of methyl jasmonate on the monoterpenes of Muscat Hamburg grapes and wine.
    Yue X; Shi P; Tang Y; Zhang H; Ma X; Ju Y; Zhang Z
    J Sci Food Agric; 2021 Jul; 101(9):3665-3675. PubMed ID: 33280112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering of monoterpene synthesis in yeast.
    Fischer MJ; Meyer S; Claudel P; Bergdoll M; Karst F
    Biotechnol Bioeng; 2011 Aug; 108(8):1883-92. PubMed ID: 21391209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coexpression of α-l-arabinofuranosidase and β-glucosidase in Saccharomyces cerevisiae.
    Zietsman AJ; de Klerk D; van Rensburg P
    FEMS Yeast Res; 2011 Feb; 11(1):88-103. PubMed ID: 21062416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of glycosidases addition on selected monoterpenes contents in musts and white wines from two grape varieties grown in Poland.
    Dziadas M; Jeleń H
    Acta Sci Pol Technol Aliment; 2011; 10(1):7-17. PubMed ID: 22232525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The aromatic profile of wine distillates from Ugni blanc grape musts is influenced by the nitrogen nutrition (organic vs. inorganic) of Saccharomyces cerevisiae.
    Guittin C; Maçna F; Barreau A; Poitou X; Sablayrolles JM; Mouret JR; Farines V
    Food Microbiol; 2023 May; 111():104193. PubMed ID: 36681397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overproduction of geraniol by enhanced precursor supply in Saccharomyces cerevisiae.
    Liu J; Zhang W; Du G; Chen J; Zhou J
    J Biotechnol; 2013 Dec; 168(4):446-51. PubMed ID: 24161921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Manipulation of GES and ERG20 for geraniol overproduction in Saccharomyces cerevisiae.
    Jiang GZ; Yao MD; Wang Y; Zhou L; Song TQ; Liu H; Xiao WH; Yuan YJ
    Metab Eng; 2017 May; 41():57-66. PubMed ID: 28359705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 'Fortified' wines volatile composition: Effect of different postharvest dehydration conditions of wine grapes cv. Malvasia moscata (Vitis vinifera L.).
    Urcan DE; Giacosa S; Torchio F; Río Segade S; Raimondi S; Bertolino M; Gerbi V; Pop N; Rolle L
    Food Chem; 2017 Mar; 219():346-356. PubMed ID: 27765237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.