BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 26377229)

  • 1. Sleep spindles and human cortical nociception: a surface and intracerebral electrophysiological study.
    Claude L; Chouchou F; Prados G; Castro M; De Blay B; Perchet C; García-Larrea L; Mazza S; Bastuji H
    J Physiol; 2015 Nov; 593(22):4995-5008. PubMed ID: 26377229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterogeneity of arousals in human sleep: A stereo-electroencephalographic study.
    Peter-Derex L; Magnin M; Bastuji H
    Neuroimage; 2015 Dec; 123():229-44. PubMed ID: 26220744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracortical Functional Connectivity Predicts Arousal to Noxious Stimuli during Sleep in Humans.
    Bastuji H; Cadic-Melchior A; Magnin M; Garcia-Larrea L
    J Neurosci; 2021 Jun; 41(23):5115-5123. PubMed ID: 33931551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thalamic Responses to Nociceptive-Specific Input in Humans: Functional Dichotomies and Thalamo-Cortical Connectivity.
    Bastuji H; Frot M; Mazza S; Perchet C; Magnin M; Garcia-Larrea L
    Cereb Cortex; 2016 Jun; 26(6):2663-76. PubMed ID: 25994963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local sleep spindles in the human thalamus.
    Bastuji H; Lamouroux P; Villalba M; Magnin M; Garcia-Larrea L
    J Physiol; 2020 Jun; 598(11):2109-2124. PubMed ID: 32118292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insular responses to transient painful and non-painful thermal and mechanical spinothalamic stimuli recorded using intracerebral EEG.
    Liberati G; Mulders D; Algoet M; van den Broeke EN; Santos SF; Ribeiro Vaz JG; Raftopoulos C; Mouraux A
    Sci Rep; 2020 Dec; 10(1):22319. PubMed ID: 33339884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nociceptive Local Field Potentials Recorded from the Human Insula Are Not Specific for Nociception.
    Liberati G; Klöcker A; Safronova MM; Ferrão Santos S; Ribeiro Vaz JG; Raftopoulos C; Mouraux A
    PLoS Biol; 2016 Jan; 14(1):e1002345. PubMed ID: 26734726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Density and frequency caudo-rostral gradients of sleep spindles recorded in the human cortex.
    Peter-Derex L; Comte JC; Mauguière F; Salin PA
    Sleep; 2012 Jan; 35(1):69-79. PubMed ID: 22215920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insular-limbic dissociation to intra-epidermal electrical Aδ activation: A comparative study with thermo-nociceptive laser stimulation.
    Hagiwara K; Perchet C; Frot M; Bastuji H; Garcia-Larrea L
    Eur J Neurosci; 2018 Nov; 48(10):3186-3198. PubMed ID: 30203624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pain and sleep: from reaction to action.
    Mazza S; Magnin M; Bastuji H
    Neurophysiol Clin; 2012 Oct; 42(5):337-44. PubMed ID: 23040704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The posterior insular-opercular region and the search of a primary cortex for pain.
    Garcia-Larrea L
    Neurophysiol Clin; 2012 Oct; 42(5):299-313. PubMed ID: 23040701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spindle oscillations during cortical spreading depression in naturally sleeping cats.
    Contreras D; Destexhe A; Steriade M
    Neuroscience; 1997 Apr; 77(4):933-6. PubMed ID: 9130774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional connectivity between medial pulvinar and cortical networks as a predictor of arousal to noxious stimuli during sleep.
    Bastuji H; Cadic-Melchior A; Ruelle-Le Glaunec L; Magnin M; Garcia-Larrea L
    Eur J Neurosci; 2024 Feb; 59(4):570-583. PubMed ID: 36889675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of the spindle in human information processing of high-intensity stimuli during sleep.
    Cote KA; Epps TM; Campbell KB
    J Sleep Res; 2000 Mar; 9(1):19-26. PubMed ID: 10733685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Processing of nociceptive input from posterior to anterior insula in humans.
    Frot M; Faillenot I; Mauguière F
    Hum Brain Mapp; 2014 Nov; 35(11):5486-99. PubMed ID: 24916602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of generator sources of human sleep spindles by dipole tracing method.
    Ueda K; Nittono H; Hayashi M; Hori T
    Psychiatry Clin Neurosci; 2000 Jun; 54(3):270-1. PubMed ID: 11186072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sleep Spindles: Where They Come From, What They Do.
    Lüthi A
    Neuroscientist; 2014 Jun; 20(3):243-56. PubMed ID: 23981852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatiotemporal Organization and Cross-Frequency Coupling of Sleep Spindles in Primate Cerebral Cortex.
    Takeuchi S; Murai R; Shimazu H; Isomura Y; Mima T; Tsujimoto T
    Sleep; 2016 Sep; 39(9):1719-35. PubMed ID: 27397568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterogeneous Origins of Human Sleep Spindles in Different Cortical Layers.
    Hagler DJ; Ulbert I; Wittner L; Erőss L; Madsen JR; Devinsky O; Doyle W; Fabó D; Cash SS; Halgren E
    J Neurosci; 2018 Mar; 38(12):3013-3025. PubMed ID: 29449429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hemodynamic cerebral correlates of sleep spindles during human non-rapid eye movement sleep.
    Schabus M; Dang-Vu TT; Albouy G; Balteau E; Boly M; Carrier J; Darsaud A; Degueldre C; Desseilles M; Gais S; Phillips C; Rauchs G; Schnakers C; Sterpenich V; Vandewalle G; Luxen A; Maquet P
    Proc Natl Acad Sci U S A; 2007 Aug; 104(32):13164-9. PubMed ID: 17670944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.