These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 26377229)

  • 21. Thalamocortical and intracortical laminar connectivity determines sleep spindle properties.
    Krishnan GP; Rosen BQ; Chen JY; Muller L; Sejnowski TJ; Cash SS; Halgren E; Bazhenov M
    PLoS Comput Biol; 2018 Jun; 14(6):e1006171. PubMed ID: 29949575
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coordination of cortical and thalamic activity during non-REM sleep in humans.
    Mak-McCully RA; Rolland M; Sargsyan A; Gonzalez C; Magnin M; Chauvel P; Rey M; Bastuji H; Halgren E
    Nat Commun; 2017 May; 8():15499. PubMed ID: 28541306
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spatiotemporal patterns of sleep spindle activity in human anterior thalamus and cortex.
    Bernhard H; Schaper FLWVJ; Janssen MLF; Gommer ED; Jansma BM; Van Kranen-Mastenbroek V; Rouhl RPW; de Weerd P; Reithler J; Roberts MJ;
    Neuroimage; 2022 Nov; 263():119625. PubMed ID: 36103955
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ongoing network state controls the length of sleep spindles via inhibitory activity.
    Barthó P; Slézia A; Mátyás F; Faradzs-Zade L; Ulbert I; Harris KD; Acsády L
    Neuron; 2014 Jun; 82(6):1367-79. PubMed ID: 24945776
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Asleep but aware?
    Mazza S; Perchet C; Frot M; Michael GA; Magnin M; Garcia-Larrea L; Bastuji H
    Brain Cogn; 2014 Jun; 87():7-15. PubMed ID: 24632088
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of topographically specific sleep spindles in mice.
    Kim D; Hwang E; Lee M; Sung H; Choi JH
    Sleep; 2015 Jan; 38(1):85-96. PubMed ID: 25325451
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Autonomic pain responses during sleep: a study of heart rate variability.
    Chouchou F; Pichot V; Perchet C; Legrain V; Garcia-Larrea L; Roche F; Bastuji H
    Eur J Pain; 2011 Jul; 15(6):554-60. PubMed ID: 21216165
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Contribution of Thalamocortical Core and Matrix Pathways to Sleep Spindles.
    Piantoni G; Halgren E; Cash SS
    Neural Plast; 2016; 2016():3024342. PubMed ID: 27144033
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cortical inhibition of laser pain and laser-evoked potentials by non-nociceptive somatosensory input.
    Testani E; Le Pera D; Del Percio C; Miliucci R; Brancucci A; Pazzaglia C; De Armas L; Babiloni C; Rossini PM; Valeriani M
    Eur J Neurosci; 2015 Oct; 42(7):2407-14. PubMed ID: 26227011
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Responses in Rat Core Auditory Cortex are Preserved during Sleep Spindle Oscillations.
    Sela Y; Vyazovskiy VV; Cirelli C; Tononi G; Nir Y
    Sleep; 2016 May; 39(5):1069-82. PubMed ID: 26856904
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Intracortical modulation, and not spinal inhibition, mediates placebo analgesia.
    Martini M; Lee MC; Valentini E; Iannetti GD
    Eur J Neurosci; 2015 Feb; 41(4):498-504. PubMed ID: 25523008
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Unmasking the obligatory components of nociceptive event-related brain potentials.
    Mouraux A; De Paepe AL; Marot E; Plaghki L; Iannetti GD; Legrain V
    J Neurophysiol; 2013 Nov; 110(10):2312-24. PubMed ID: 23966678
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sleep spindles and arousal: the effects of age and sensory stimulation.
    Pivik RT; Joncas S; Busby KA
    Sleep Res Online; 1999; 2(4):89-100. PubMed ID: 11382889
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Amygdala and anterior insula control the passage from nociception to pain.
    Gélébart J; Garcia-Larrea L; Frot M
    Cereb Cortex; 2023 Mar; 33(7):3538-3547. PubMed ID: 35965070
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synchronization of isolated downstates (K-complexes) may be caused by cortically-induced disruption of thalamic spindling.
    Mak-McCully RA; Deiss SR; Rosen BQ; Jung KY; Sejnowski TJ; Bastuji H; Rey M; Cash SS; Bazhenov M; Halgren E
    PLoS Comput Biol; 2014 Sep; 10(9):e1003855. PubMed ID: 25255217
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gamma-Band Oscillations Preferential for Nociception can be Recorded in the Human Insula.
    Liberati G; Klöcker A; Algoet M; Mulders D; Maia Safronova M; Ferrao Santos S; Ribeiro Vaz JG; Raftopoulos C; Mouraux A
    Cereb Cortex; 2018 Oct; 28(10):3650-3664. PubMed ID: 29028955
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Influence of the aspecific thalamus on "spindles", "bursts", barbiturate "recruiting responses" and primary thalamic and cortical responses evoked by sensory stimuli].
    Angeleri F; Marchesi GF; Quattrini A
    Boll Soc Ital Biol Sper; 1967 Mar; 43(5):233-6. PubMed ID: 6060494
    [No Abstract]   [Full Text] [Related]  

  • 38. Activation of fast sleep spindles at the premotor cortex and parietal areas contributes to motor learning: a study using sLORETA.
    Tamaki M; Matsuoka T; Nittono H; Hori T
    Clin Neurophysiol; 2009 May; 120(5):878-86. PubMed ID: 19376746
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Caloric vestibular stimulation modulates nociceptive evoked potentials.
    Ferrè ER; Haggard P; Bottini G; Iannetti GD
    Exp Brain Res; 2015 Dec; 233(12):3393-401. PubMed ID: 26282602
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A role for spindles in the onset of rapid eye movement sleep.
    Bandarabadi M; Herrera CG; Gent TC; Bassetti C; Schindler K; Adamantidis AR
    Nat Commun; 2020 Oct; 11(1):5247. PubMed ID: 33067436
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.