These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 26377466)

  • 41. Role of small conductance Ca²⁺-activated K⁺ channels in controlling CA1 pyramidal cell excitability.
    Chen S; Benninger F; Yaari Y
    J Neurosci; 2014 Jun; 34(24):8219-30. PubMed ID: 24920626
    [TBL] [Abstract][Full Text] [Related]  

  • 42. SK Channels Regulate Resting Properties and Signaling Reliability of a Developing Fast-Spiking Neuron.
    Zhang Y; Huang H
    J Neurosci; 2017 Nov; 37(44):10738-10747. PubMed ID: 28982705
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Aβ impairs nicotinic regulation of inhibitory synaptic transmission and interneuron excitability in prefrontal cortex.
    Chen GJ; Xiong Z; Yan Z
    Mol Neurodegener; 2013 Jan; 8():3. PubMed ID: 23327202
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Impaired hippocampal acetylcholine release parallels spatial memory deficits in Tg2576 mice subjected to basal forebrain cholinergic degeneration.
    Laursen B; Mørk A; Plath N; Kristiansen U; Bastlund JF
    Brain Res; 2014 Jan; 1543():253-62. PubMed ID: 24231553
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electrophysiological studies on the hippocampus and prefrontal cortex assessing the effects of amyloidosis in amyloid precursor protein 23 transgenic mice.
    Roder S; Danober L; Pozza MF; Lingenhoehl K; Wiederhold KH; Olpe HR
    Neuroscience; 2003; 120(3):705-20. PubMed ID: 12895511
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Serotonergic Suppression of Mouse Prefrontal Circuits Implicated in Task Attention.
    Tian MK; Schmidt EF; Lambe EK
    eNeuro; 2016; 3(5):. PubMed ID: 27844060
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Increased transient Na
    Routh BN; Rathour RK; Baumgardner ME; Kalmbach BE; Johnston D; Brager DH
    J Physiol; 2017 Jul; 595(13):4431-4448. PubMed ID: 28370141
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cholinergic inhibition of neocortical pyramidal neurons.
    Gulledge AT; Stuart GJ
    J Neurosci; 2005 Nov; 25(44):10308-20. PubMed ID: 16267239
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ionic mechanism of the slow afterdepolarization induced by muscarinic receptor activation in rat prefrontal cortex.
    Haj-Dahmane S; Andrade R
    J Neurophysiol; 1998 Sep; 80(3):1197-210. PubMed ID: 9744932
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dendritic excitability during increased synaptic activity in rat neocortical L5 pyramidal neurons.
    Bar-Yehuda D; Ben-Porat H; Korngreen A
    Eur J Neurosci; 2008 Dec; 28(11):2183-94. PubMed ID: 19046365
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Accumulation of cytoplasmic calcium, but not apamin-sensitive afterhyperpolarization current, during high frequency firing in rat subthalamic nucleus cells.
    Teagarden M; Atherton JF; Bevan MD; Wilson CJ
    J Physiol; 2008 Feb; 586(3):817-33. PubMed ID: 18063664
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Heterogeneity of phasic cholinergic signaling in neocortical neurons.
    Gulledge AT; Park SB; Kawaguchi Y; Stuart GJ
    J Neurophysiol; 2007 Mar; 97(3):2215-29. PubMed ID: 17122323
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Metabotropic glutamate receptors regulate hippocampal CA1 pyramidal neuron excitability via Ca²⁺ wave-dependent activation of SK and TRPC channels.
    El-Hassar L; Hagenston AM; D'Angelo LB; Yeckel MF
    J Physiol; 2011 Jul; 589(Pt 13):3211-29. PubMed ID: 21576272
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hippocalcin gates the calcium activation of the slow afterhyperpolarization in hippocampal pyramidal cells.
    Tzingounis AV; Kobayashi M; Takamatsu K; Nicoll RA
    Neuron; 2007 Feb; 53(4):487-93. PubMed ID: 17296551
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Oral Administration of Gintonin Attenuates Cholinergic Impairments by Scopolamine, Amyloid-β Protein, and Mouse Model of Alzheimer's Disease.
    Kim HJ; Shin EJ; Lee BH; Choi SH; Jung SW; Cho IH; Hwang SH; Kim JY; Han JS; Chung C; Jang CG; Rhim H; Kim HC; Nah SY
    Mol Cells; 2015 Sep; 38(9):796-805. PubMed ID: 26255830
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cholinergic modulation of working memory activity in primate prefrontal cortex.
    Zhou X; Qi XL; Douglas K; Palaninathan K; Kang HS; Buccafusco JJ; Blake DT; Constantinidis C
    J Neurophysiol; 2011 Nov; 106(5):2180-8. PubMed ID: 21795623
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fragile X mental retardation protein modulates somatic D-type K
    Kalmbach BE; Brager DH
    J Neurophysiol; 2020 Dec; 124(6):1766-1773. PubMed ID: 32997566
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cholinergic neuron gene expression differences captured by translational profiling in a mouse model of Alzheimer's disease.
    McKeever PM; Kim T; Hesketh AR; MacNair L; Miletic D; Favrin G; Oliver SG; Zhang Z; St George-Hyslop P; Robertson J
    Neurobiol Aging; 2017 Sep; 57():104-119. PubMed ID: 28628896
    [TBL] [Abstract][Full Text] [Related]  

  • 59. SK (KCa2) channels do not control somatic excitability in CA1 pyramidal neurons but can be activated by dendritic excitatory synapses and regulate their impact.
    Gu N; Hu H; Vervaeke K; Storm JF
    J Neurophysiol; 2008 Nov; 100(5):2589-604. PubMed ID: 18684909
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Different calcium sources control somatic versus dendritic SK channel activation during action potentials.
    Jones SL; Stuart GJ
    J Neurosci; 2013 Dec; 33(50):19396-405. PubMed ID: 24336706
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.