BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 26378338)

  • 1. Effect of adduct formation with molecular nitrogen on the measured collisional cross sections of transition metal-1,10-phenanthroline complexes in traveling wave ion-mobility spectrometry: N2 is not always an "inert" buffer gas.
    Rijs NJ; Weiske T; Schlangen M; Schwarz H
    Anal Chem; 2015 Oct; 87(19):9769-76. PubMed ID: 26378338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correction to Effect of Adduct Formation with Molecular Nitrogen on the Measured Collisional Cross Sections of Transition Metal-1,10- Phenanthroline Complexes in Traveling Wave Ion-Mobility Spectrometry: N2 Is Not Always an "Inert" Buffer Gas.
    Rijs NJ; Weiske T; Schlangen M; Schwarz H
    Anal Chem; 2015 Nov; 87(22):11601. PubMed ID: 26509419
    [No Abstract]   [Full Text] [Related]  

  • 3. Collisional Cross-Sections with T-Wave Ion Mobility Spectrometry without Experimental Calibration.
    Mortensen DN; Susa AC; Williams ER
    J Am Soc Mass Spectrom; 2017 Jul; 28(7):1282-1292. PubMed ID: 28432656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of drift gas on collision cross sections of a protein standard in linear drift tube and traveling wave ion mobility mass spectrometry.
    Jurneczko E; Kalapothakis J; Campuzano ID; Morris M; Barran PE
    Anal Chem; 2012 Oct; 84(20):8524-31. PubMed ID: 22974196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deciphering drift time measurements from travelling wave ion mobility spectrometry-mass spectrometry studies.
    Smith DP; Knapman TW; Campuzano I; Malham RW; Berryman JT; Radford SE; Ashcroft AE
    Eur J Mass Spectrom (Chichester); 2009; 15(2):113-30. PubMed ID: 19423898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anomerization of Acrylated Glucose During Traveling Wave Ion Mobility Spectrometry.
    Chendo C; Moreira G; Tintaru A; Posocco P; Laurini E; Lefay C; Gigmes D; Viel S; Pricl S; Charles L
    J Am Soc Mass Spectrom; 2015 Sep; 26(9):1483-93. PubMed ID: 26041082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A study of calibrant selection in measurement of carbohydrate and peptide ion-neutral collision cross sections by traveling wave ion mobility spectrometry.
    Gelb AS; Jarratt RE; Huang Y; Dodds ED
    Anal Chem; 2014 Nov; 86(22):11396-402. PubMed ID: 25329513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural resolution of 4-substituted proline diastereomers with ion mobility spectrometry via alkali metal ion cationization.
    Flick TG; Campuzano ID; Bartberger MD
    Anal Chem; 2015 Mar; 87(6):3300-7. PubMed ID: 25664640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Influence of Drift Gas Composition on the Separation Mechanism in Traveling Wave Ion Mobility Spectrometry: Insight from Electrodynamic Simulations.
    May JC; McLean JA
    Int J Ion Mobil Spectrom; 2003 Jun; 16(2):85-94. PubMed ID: 23888124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of Group I Metal Adduction to the Separation of Steroids by Traveling Wave Ion Mobility Spectrometry.
    Rister AL; Martin TL; Dodds ED
    J Am Soc Mass Spectrom; 2019 Feb; 30(2):248-255. PubMed ID: 30414066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tandem Mass Spectrometry and Ion Mobility Reveals Structural Insight into Eicosanoid Product Ion Formation.
    Di Giovanni JP; Barkley RM; Jones DNM; Hankin JA; Murphy RC
    J Am Soc Mass Spectrom; 2018 Jun; 29(6):1231-1241. PubMed ID: 29687419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapidly formed quinalphos complexes with transition metal ions characterized by electrospray ionization mass spectrometry.
    Keller BO; Esbata AA; Buncel E; van Loon GW
    Rapid Commun Mass Spectrom; 2013 Jun; 27(12):1319-28. PubMed ID: 23681809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modular Ion Mobility Calibrants for Organometallic Anions Based on Tetraorganylborate Salts.
    Auth T; Grabarics M; Schlangen M; Pagel K; Koszinowski K
    Anal Chem; 2021 Jul; 93(28):9797-9807. PubMed ID: 34227799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of traveling wave ion mobility separation on data independent acquisition in proteomics studies.
    Shliaha PV; Bond NJ; Gatto L; Lilley KS
    J Proteome Res; 2013 Jun; 12(6):2323-39. PubMed ID: 23514362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein Structural Studies by Traveling Wave Ion Mobility Spectrometry: A Critical Look at Electrospray Sources and Calibration Issues.
    Sun Y; Vahidi S; Sowole MA; Konermann L
    J Am Soc Mass Spectrom; 2016 Jan; 27(1):31-40. PubMed ID: 26369778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of multimeric steroid metal adducts and implications for isomer mixture separation by traveling wave ion mobility spectrometry.
    Rister AL; Martin TL; Dodds ED
    J Mass Spectrom; 2019 May; 54(5):429-436. PubMed ID: 30860640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions of the hormone oxytocin with divalent metal ions.
    Wyttenbach T; Liu D; Bowers MT
    J Am Chem Soc; 2008 May; 130(18):5993-6000. PubMed ID: 18393501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How useful is molecular modelling in combination with ion mobility mass spectrometry for 'small molecule' ion mobility collision cross-sections?
    Lapthorn C; Pullen FS; Chowdhry BZ; Wright P; Perkins GL; Heredia Y
    Analyst; 2015 Oct; 140(20):6814-23. PubMed ID: 26131453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MALDI coupled to modified traveling wave ion mobility mass spectrometry for fast enantiomeric determination.
    Nachtigall FM; Rojas M; Santos LS
    J Mass Spectrom; 2018 Aug; 53(8):693-699. PubMed ID: 29802663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural Elucidation of β-Lactam Diastereoisomers through Ion Mobility Mass Spectrometry Studies and Theoretical Calculations.
    Troć A; Zimnicka M; Koliński M; Danikiewicz W
    J Mass Spectrom; 2016 Apr; 51(4):282-90. PubMed ID: 27041658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.