These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 26378378)

  • 1. Providing Oligonucleotides with Steric Selectivity by Brush-Polymer-Assisted Compaction.
    Lu X; Tran TH; Jia F; Tan X; Davis S; Krishnan S; Amiji MM; Zhang K
    J Am Chem Soc; 2015 Oct; 137(39):12466-9. PubMed ID: 26378378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Well-Defined DNA-Polymer Miktoarm Stars for Enzyme-Resistant Nanoflares and Carrier-Free Gene Regulation.
    Li H; Li Y; Xiao Y; Zhang B; Cheng Z; Shi J; Xiong J; Li Z; Zhang K
    Bioconjug Chem; 2020 Mar; 31(3):530-536. PubMed ID: 32041403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembly of conjugated polymers and ds-oligonucleotides directed fractal-like aggregates.
    Gan H; Li Y; Liu H; Wang S; Li C; Yuan M; Liu X; Wang C; Jiang L; Zhu D
    Biomacromolecules; 2007 May; 8(5):1723-9. PubMed ID: 17458934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of PEG Architecture on the Hybridization Thermodynamics and Protein Accessibility of PEGylated Oligonucleotides.
    Jia F; Lu X; Tan X; Wang D; Cao X; Zhang K
    Angew Chem Int Ed Engl; 2017 Jan; 56(5):1239-1243. PubMed ID: 28032948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulating the Cellular Immune Response of Oligonucleotides by Brush Polymer-Assisted Compaction.
    Cao X; Lu X; Wang D; Jia F; Tan X; Corley M; Chen X; Zhang K
    Small; 2017 Nov; 13(43):. PubMed ID: 28696590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From ribbons to networks: hierarchical organization of DNA-grafted supramolecular polymers.
    Vyborna Y; Vybornyi M; Häner R
    J Am Chem Soc; 2015 Nov; 137(44):14051-4. PubMed ID: 26491956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sugar-based amphiphilic polymers for biomedical applications: from nanocarriers to therapeutics.
    Gu L; Faig A; Abdelhamid D; Uhrich K
    Acc Chem Res; 2014 Oct; 47(10):2867-77. PubMed ID: 25141069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phospholipid membranes decorated by cholesterol-based oligonucleotides as soft hybrid nanostructures.
    Banchelli M; Betti F; Berti D; Caminati G; Bombelli FB; Brown T; Wilhelmsson LM; Nordén B; Baglioni P
    J Phys Chem B; 2008 Sep; 112(35):10942-52. PubMed ID: 18693696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanometric layers for direct, signal-on, selective, and sensitive electrochemical detection of oligonucleotides hybridization.
    March G; Noël V; Piro B; Reisberg S; Pham MC
    J Am Chem Soc; 2008 Nov; 130(47):15752-3. PubMed ID: 18973298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyion complex micelle based on albumin-polymer conjugates: multifunctional oligonucleotide transfection vectors for anticancer chemotherapeutics.
    Jiang Y; Lu H; Khine YY; Dag A; Stenzel MH
    Biomacromolecules; 2014 Nov; 15(11):4195-205. PubMed ID: 25290019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oligonucleotide and polymer functionalized nanoparticles for amplification-free detection of DNA.
    Thomson DA; Tee EH; Tran NT; Monteiro MJ; Cooper MA
    Biomacromolecules; 2012 Jun; 13(6):1981-9. PubMed ID: 22612382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Small-interfering RNA (siRNA)-based functional micro- and nanostructures for efficient and selective gene silencing.
    Lee SH; Chung BH; Park TG; Nam YS; Mok H
    Acc Chem Res; 2012 Jul; 45(7):1014-25. PubMed ID: 22413937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Orthogonal protein decoration of DNA nanostructures.
    Meyer R; Niemeyer CM
    Small; 2011 Nov; 7(22):3211-8. PubMed ID: 21953812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-Dimensional Nucleic Acid Nanostructures Based on Self-Assembled Polymer-Oligonucleotide Conjugates of Comblike and Coil-Comb Chain Architectures.
    Dimitrov E; Toncheva-Moncheva N; Doumanov JA; Mladenova K; Petrova S; Pispas S; Rangelov S
    Biomacromolecules; 2023 May; 24(5):2213-2224. PubMed ID: 37014992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polycondensation of polymer brushes via DNA hybridization.
    Lu X; Watts E; Jia F; Tan X; Zhang K
    J Am Chem Soc; 2014 Jul; 136(29):10214-7. PubMed ID: 25000330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanostructure and salt effect of zwitterionic carboxybetaine brush at the air/water interface.
    Matsuoka H; Yamakawa Y; Ghosh A; Saruwatari Y
    Langmuir; 2015 May; 31(17):4827-36. PubMed ID: 25867972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymatic fabrication of DNA nanostructures: extension of a self-assembled oligonucleotide monolayer on gold arrays.
    Chow DC; Lee WK; Zauscher S; Chilkoti A
    J Am Chem Soc; 2005 Oct; 127(41):14122-3. PubMed ID: 16218572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surfaces for tuning of oligonucleotide biosensing selectivity based on surface-initiated atom transfer radical polymerization on glass and silicon substrates.
    Wong AK; Krull UJ
    Anal Chim Acta; 2009 Apr; 639(1-2):1-12. PubMed ID: 19345752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Agarose-assisted dip-pen nanolithography of oligonucleotides and proteins.
    Senesi AJ; Rozkiewicz DI; Reinhoudt DN; Mirkin CA
    ACS Nano; 2009 Aug; 3(8):2394-402. PubMed ID: 19645425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the Enzymatic Stability and the Pharmacokinetics of Oligonucleotides via DNA-Backboned Bottlebrush Polymers.
    Jia F; Wang D; Lu X; Tan X; Wang Y; Lu H; Zhang K
    Nano Lett; 2018 Nov; 18(11):7378-7382. PubMed ID: 30376347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.