BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

551 related articles for article (PubMed ID: 26378502)

  • 1. Automated lesion detectors in retinal fundus images.
    Figueiredo IN; Kumar S; Oliveira CM; Ramos JD; Engquist B
    Comput Biol Med; 2015 Nov; 66():47-65. PubMed ID: 26378502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simple methods for segmentation and measurement of diabetic retinopathy lesions in retinal fundus images.
    Köse C; Sevik U; Ikibaş C; Erdöl H
    Comput Methods Programs Biomed; 2012 Aug; 107(2):274-93. PubMed ID: 21757250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated detection of exudates in colored retinal images for diagnosis of diabetic retinopathy.
    Akram MU; Tariq A; Anjum MA; Javed MY
    Appl Opt; 2012 Jul; 51(20):4858-66. PubMed ID: 22781265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A method to assist in the diagnosis of early diabetic retinopathy: Image processing applied to detection of microaneurysms in fundus images.
    Rosas-Romero R; Martínez-Carballido J; Hernández-Capistrán J; Uribe-Valencia LJ
    Comput Med Imaging Graph; 2015 Sep; 44():41-53. PubMed ID: 26245720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of automated fundus photograph analysis algorithms for detecting microaneurysms, haemorrhages and exudates, and of a computer-assisted diagnostic system for grading diabetic retinopathy.
    Dupas B; Walter T; Erginay A; Ordonez R; Deb-Joardar N; Gain P; Klein JC; Massin P
    Diabetes Metab; 2010 Jun; 36(3):213-20. PubMed ID: 20219404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated detection and differentiation of drusen, exudates, and cotton-wool spots in digital color fundus photographs for diabetic retinopathy diagnosis.
    Niemeijer M; van Ginneken B; Russell SR; Suttorp-Schulten MS; Abràmoff MD
    Invest Ophthalmol Vis Sci; 2007 May; 48(5):2260-7. PubMed ID: 17460289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of hard exudates in retinal images using a radial basis function classifier.
    García M; Sánchez CI; Poza J; López MI; Hornero R
    Ann Biomed Eng; 2009 Jul; 37(7):1448-63. PubMed ID: 19430906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An ensemble-based system for microaneurysm detection and diabetic retinopathy grading.
    Antal B; Hajdu A
    IEEE Trans Biomed Eng; 2012 Jun; 59(6):1720-6. PubMed ID: 22481810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated detection of red lesions from digital colour fundus photographs.
    Jaafar HF; Nandi AK; Al-Nuaimy W
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6232-5. PubMed ID: 22255763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel automatic image processing algorithm for detection of hard exudates based on retinal image analysis.
    Sánchez CI; Hornero R; López MI; Aboy M; Poza J; Abásolo D
    Med Eng Phys; 2008 Apr; 30(3):350-7. PubMed ID: 17556004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DREAM: diabetic retinopathy analysis using machine learning.
    Roychowdhury S; Koozekanani DD; Parhi KK
    IEEE J Biomed Health Inform; 2014 Sep; 18(5):1717-28. PubMed ID: 25192577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retinal images benchmark for the detection of diabetic retinopathy and clinically significant macular edema (CSME).
    Noor-Ul-Huda M; Tehsin S; Ahmed S; Niazi FAK; Murtaza Z
    Biomed Tech (Berl); 2019 May; 64(3):297-307. PubMed ID: 30055096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated detection of dark and bright lesions in retinal images for early detection of diabetic retinopathy.
    Akram UM; Khan SA
    J Med Syst; 2012 Oct; 36(5):3151-62. PubMed ID: 22090037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discrimination of retinal images containing bright lesions using sparse coded features and SVM.
    Sidibé D; Sadek I; Mériaudeau F
    Comput Biol Med; 2015 Jul; 62():175-84. PubMed ID: 25935125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic detection of blood vessels in retinal images for diabetic retinopathy diagnosis.
    Raja DS; Vasuki S
    Comput Math Methods Med; 2015; 2015():419279. PubMed ID: 25810749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection and classification of retinal lesions for grading of diabetic retinopathy.
    Usman Akram M; Khalid S; Tariq A; Khan SA; Azam F
    Comput Biol Med; 2014 Feb; 45():161-71. PubMed ID: 24480176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated Diabetic Retinopathy Screening and Monitoring Using Retinal Fundus Image Analysis.
    Bhaskaranand M; Ramachandra C; Bhat S; Cuadros J; Nittala MG; Sadda S; Solanki K
    J Diabetes Sci Technol; 2016 Feb; 10(2):254-61. PubMed ID: 26888972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Points of interest and visual dictionaries for automatic retinal lesion detection.
    Rocha A; Carvalho T; Jelinek HF; Goldenstein S; Wainer J
    IEEE Trans Biomed Eng; 2012 Aug; 59(8):2244-53. PubMed ID: 22665502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated detection of exudates for diabetic retinopathy screening.
    Fleming AD; Philip S; Goatman KA; Williams GJ; Olson JA; Sharp PF
    Phys Med Biol; 2007 Dec; 52(24):7385-96. PubMed ID: 18065845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mathematical morphology for microaneurysm detection in fundus images.
    Joshi S; Karule PT
    Eur J Ophthalmol; 2020 Sep; 30(5):1135-1142. PubMed ID: 31018679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.