These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 26378553)

  • 1. Remediation of Rare Earth Element Pollutants by Sorption Process Using Organic Natural Sorbents.
    Butnariu M; Negrea P; Lupa L; Ciopec M; Negrea A; Pentea M; Sarac I; Samfira I
    Int J Environ Res Public Health; 2015 Sep; 12(9):11278-87. PubMed ID: 26378553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sorption equilibrium of mercury onto ground-up tree fern.
    Ho YS; Wang CC
    J Hazard Mater; 2008 Aug; 156(1-3):398-404. PubMed ID: 18241985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic and mechanism studies of the adsorption of lead onto waste cow bone powder (WCBP) surfaces.
    Cha J; Cui M; Jang M; Cho SH; Moon DH; Khim J
    Environ Geochem Health; 2011 Jan; 33 Suppl 1():81-9. PubMed ID: 21046431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization, equilibrium, kinetic, thermodynamic and desorption studies on the sorption of Cu(II) from an aqueous solution using marine green algae: Halimeda gracilis.
    Jayakumar R; Rajasimman M; Karthikeyan C
    Ecotoxicol Environ Saf; 2015 Nov; 121():199-210. PubMed ID: 25866206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of copper(II) and lead(II) from aqueous solution by manganese oxide coated sand II. Equilibrium study and competitive adsorption.
    Han R; Lu Z; Zou W; Daotong W; Shi J; Jiujun Y
    J Hazard Mater; 2006 Sep; 137(1):480-8. PubMed ID: 16631305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of divalent heavy metals (Cd, Cu, Pb, and Zn) and arsenic(III) from aqueous solutions using scoria: kinetics and equilibria of sorption.
    Kwon JS; Yun ST; Lee JH; Kim SO; Jo HY
    J Hazard Mater; 2010 Feb; 174(1-3):307-13. PubMed ID: 19828237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solubility-normalized combined adsorption-partitioning sorption isotherms for organic pollutants.
    Kleineidam S; Schüth C; Grathwohl P
    Environ Sci Technol; 2002 Nov; 36(21):4689-97. PubMed ID: 12433183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions of microorganisms with rare earth ions and their utilization for separation and environmental technology.
    Moriwaki H; Yamamoto H
    Appl Microbiol Biotechnol; 2013 Jan; 97(1):1-8. PubMed ID: 23111596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption of rare earth ions onto the cell walls of wild-type and lipoteichoic acid-defective strains of Bacillus subtilis.
    Moriwaki H; Koide R; Yoshikawa R; Warabino Y; Yamamoto H
    Appl Microbiol Biotechnol; 2013 Apr; 97(8):3721-8. PubMed ID: 22684329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption characteristics of bisphenol-A in aqueous solutions onto hydrophobic zeolite.
    Tsai WT; Hsu HC; Su TY; Lin KY; Lin CM
    J Colloid Interface Sci; 2006 Jul; 299(2):513-9. PubMed ID: 16631189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Utilization of water hyacinth weed (Eichhornia crassipes) for the removal of Pb(II), Cd(II) and Zn(II) from aquatic environments: an adsorption isotherm study.
    Mahamadi C; Nharingo T
    Environ Technol; 2010 Oct; 31(11):1221-8. PubMed ID: 21046952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid and high-performance adsorptive removal of hazardous acridine orange from aqueous environment using Abelmoschus esculentus seed powder: Single- and multi-parameter optimization studies.
    Nayak AK; Pal A
    J Environ Manage; 2018 Jul; 217():573-591. PubMed ID: 29649730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of copper ions from aqueous solution by tree fern.
    Ho YS
    Water Res; 2003 May; 37(10):2323-30. PubMed ID: 12727241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosorption of metal ions on lignocellulosic materials: batch and continuous-flow process studies.
    Mahmood-Ul-Hassan M; Suthar V; Ahmad R; Yousra M
    Environ Monit Assess; 2018 Apr; 190(5):287. PubMed ID: 29667025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of copper and nickel ions from aqueous solutions by grape stalks wastes.
    Villaescusa I; Fiol N; Martínez M; Miralles N; Poch J; Serarols J
    Water Res; 2004 Feb; 38(4):992-1002. PubMed ID: 14769419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of engineered natural organic sorbents for environmental applications. 2. Sorption characteristics and capacities with respect to phenanthrene.
    Tang J; Weber WJ
    Environ Sci Technol; 2006 Mar; 40(5):1657-63. PubMed ID: 16568784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental remediation of heavy metal ions by novel-nanomaterials: A review.
    Wu Y; Pang H; Liu Y; Wang X; Yu S; Fu D; Chen J; Wang X
    Environ Pollut; 2019 Mar; 246():608-620. PubMed ID: 30605816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of pentachlorophenol from aqueous solutions by dolomitic sorbents.
    Marouf R; Khelifa N; Marouf-Khelifa K; Schott J; Khelifa A
    J Colloid Interface Sci; 2006 May; 297(1):45-53. PubMed ID: 16376921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lead removal from aqueous solution by natural and pretreated clinoptilolite: adsorption equilibrium and kinetics.
    Günay A; Arslankaya E; Tosun I
    J Hazard Mater; 2007 Jul; 146(1-2):362-71. PubMed ID: 17261347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling sorption isotherms of volatile organic chemical mixtures in model and natural solids.
    Li J; Werth CJ
    Environ Toxicol Chem; 2002 Jul; 21(7):1377-83. PubMed ID: 12109736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.