These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 26378587)

  • 1. Consequences of Ultra-Violet Irradiation on the Mechanical Properties of Spider Silk.
    Lai WL; Goh KL
    J Funct Biomater; 2015 Sep; 6(3):901-16. PubMed ID: 26378587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-strength and ultra-tough supramolecular polyamide spider silk fibers assembled via specific covalent and reversible hydrogen bonds.
    Mi J; Li X; Niu S; Zhou X; Lu Y; Yang Y; Sun Y; Meng Q
    Acta Biomater; 2024 Mar; 176():190-200. PubMed ID: 38199426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular and nanostructural mechanisms of deformation, strength and toughness of spider silk fibrils.
    Nova A; Keten S; Pugno NM; Redaelli A; Buehler MJ
    Nano Lett; 2010 Jul; 10(7):2626-34. PubMed ID: 20518518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spider silk as a load bearing biomaterial: tailoring mechanical properties via structural modifications.
    Brown CP; Rosei F; Traversa E; Licoccia S
    Nanoscale; 2011 Mar; 3(3):870-6. PubMed ID: 21212901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conserved C-terminal domain of spider tubuliform spidroin 1 contributes to extensibility in synthetic fibers.
    Gnesa E; Hsia Y; Yarger JL; Weber W; Lin-Cereghino J; Lin-Cereghino G; Tang S; Agari K; Vierra C
    Biomacromolecules; 2012 Feb; 13(2):304-12. PubMed ID: 22176138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoconfinement of spider silk fibrils begets superior strength, extensibility, and toughness.
    Giesa T; Arslan M; Pugno NM; Buehler MJ
    Nano Lett; 2011 Nov; 11(11):5038-46. PubMed ID: 21967633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical Testing of Engineered Spider Silk Filaments Provides Insights into Molecular Features on a Mesoscale.
    Lang G; Neugirg BR; Kluge D; Fery A; Scheibel T
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):892-900. PubMed ID: 27935285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling of mechanical properties and structural design of spider web.
    Ko FK; Jovicic J
    Biomacromolecules; 2004; 5(3):780-5. PubMed ID: 15132661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spider silk aging: initial improvement in a high performance material followed by slow degradation.
    Agnarsson I; Boutry C; Blackledge TA
    J Exp Zool A Ecol Genet Physiol; 2008 Oct; 309(8):494-504. PubMed ID: 18626974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artificial spider silk from ion-doped and twisted core-sheath hydrogel fibres.
    Dou Y; Wang ZP; He W; Jia T; Liu Z; Sun P; Wen K; Gao E; Zhou X; Hu X; Li J; Fang S; Qian D; Liu Z
    Nat Commun; 2019 Nov; 10(1):5293. PubMed ID: 31757964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal, structural and mechanical characterization of
    Aparicio-Rojas GM; Medina-Vargas G; Díaz-Puentes E
    Heliyon; 2020 Nov; 6(11):e05262. PubMed ID: 33204867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of ageing on the mechanical properties of the silk of the bridge spider Larinioides cornutus (Clerck, 1757).
    Lepore E; Isaia M; Mammola S; Pugno N
    Sci Rep; 2016 May; 6():24699. PubMed ID: 27156712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Precise correlation of macroscopic mechanical properties and microscopic structures of animal silks-using Antheraea pernyi silkworm silk as an example.
    Fang G; Tang Y; Qi Z; Yao J; Shao Z; Chen X
    J Mater Chem B; 2017 Aug; 5(30):6042-6048. PubMed ID: 32264361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strength of Recluse Spider's Silk Originates from Nanofibrils.
    Wang Q; Schniepp HC
    ACS Macro Lett; 2018 Nov; 7(11):1364-1370. PubMed ID: 35651244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrothermal Effect on Mechanical Properties of
    Wu HC; Pandey A; Chang LY; Hsu CY; Yang TC; Tso IM; Sheu HS; Yang JC
    Polymers (Basel); 2020 Apr; 12(5):. PubMed ID: 32365504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase separation and mechanical properties of an elastomeric biomaterial from spider wrapping silk and elastin block copolymers.
    Muiznieks LD; Keeley FW
    Biopolymers; 2016 Oct; 105(10):693-703. PubMed ID: 27272259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioinspired Single-Walled Carbon Nanotubes as a Spider Silk Structure for Ultrahigh Mechanical Property.
    Luo C; Li F; Li D; Fu Q; Pan C
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):31256-31263. PubMed ID: 27779376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hierarchical looping results in extreme extensibility of silk fibre composites produced by Southern house spiders (
    Liprandi D; Ramírez M; Schlüter S; Baumgart L; Joel AC; Michalik P; Wolff JO
    Interface Focus; 2024 Jun; 14(3):20230071. PubMed ID: 39081622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Memory effect of spider major ampullate silk in loading-unloading cycles and the structural connotations.
    Jiang P; Wu LH; Lv TY; Tang SS; Hu ML; Qiu ZM; Guo C; José PR
    J Mech Behav Biomed Mater; 2023 Oct; 146():106031. PubMed ID: 37639933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of loading rate on mechanical properties and fracture morphology of spider silk.
    Hudspeth M; Nie X; Chen W; Lewis R
    Biomacromolecules; 2012 Aug; 13(8):2240-6. PubMed ID: 22780301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.