These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
310 related articles for article (PubMed ID: 26378619)
1. Stealth effect of biomolecular corona on nanoparticle uptake by immune cells. Caracciolo G; Palchetti S; Colapicchioni V; Digiacomo L; Pozzi D; Capriotti AL; La Barbera G; Laganà A Langmuir; 2015 Oct; 31(39):10764-73. PubMed ID: 26378619 [TBL] [Abstract][Full Text] [Related]
2. Impact of protein pre-coating on the protein corona composition and nanoparticle cellular uptake. Mirshafiee V; Kim R; Park S; Mahmoudi M; Kraft ML Biomaterials; 2016 Jan; 75():295-304. PubMed ID: 26513421 [TBL] [Abstract][Full Text] [Related]
3. The functional dissection of the plasma corona of SiO₂-NPs spots histidine rich glycoprotein as a major player able to hamper nanoparticle capture by macrophages. Fedeli C; Segat D; Tavano R; Bubacco L; De Franceschi G; de Laureto PP; Lubian E; Selvestrel F; Mancin F; Papini E Nanoscale; 2015 Nov; 7(42):17710-28. PubMed ID: 26451907 [TBL] [Abstract][Full Text] [Related]
4. The importance of selecting a proper biological milieu for protein corona analysis in vitro: Human plasma versus human serum. Mirshafiee V; Kim R; Mahmoudi M; Kraft ML Int J Biochem Cell Biol; 2016 Jun; 75():188-95. PubMed ID: 26643610 [TBL] [Abstract][Full Text] [Related]
6. Probing the glycans accessibility in the nanoparticle biomolecular corona. Clemente E; Martinez-Moro M; Trinh DN; Soliman MG; Spencer DIR; Gardner RA; Kotsias M; Sánchez Iglesias A; Moya S; Monopoli MP J Colloid Interface Sci; 2022 May; 613():563-574. PubMed ID: 35066229 [TBL] [Abstract][Full Text] [Related]
7. Influence of dynamic flow environment on nanoparticle-protein corona: From protein patterns to uptake in cancer cells. Palchetti S; Pozzi D; Capriotti AL; Barbera G; Chiozzi RZ; Digiacomo L; Peruzzi G; Caracciolo G; Laganà A Colloids Surf B Biointerfaces; 2017 May; 153():263-271. PubMed ID: 28273493 [TBL] [Abstract][Full Text] [Related]
8. Regulation of Macrophage Recognition through the Interplay of Nanoparticle Surface Functionality and Protein Corona. Saha K; Rahimi M; Yazdani M; Kim ST; Moyano DF; Hou S; Das R; Mout R; Rezaee F; Mahmoudi M; Rotello VM ACS Nano; 2016 Apr; 10(4):4421-30. PubMed ID: 27040442 [TBL] [Abstract][Full Text] [Related]
9. Nano-Bio Interactions in Cancer: From Therapeutics Delivery to Early Detection. Liu Y; Wang J; Xiong Q; Hornburg D; Tao W; Farokhzad OC Acc Chem Res; 2021 Jan; 54(2):291-301. PubMed ID: 33180454 [TBL] [Abstract][Full Text] [Related]
10. Visualization of the protein corona: towards a biomolecular understanding of nanoparticle-cell-interactions. Kokkinopoulou M; Simon J; Landfester K; Mailänder V; Lieberwirth I Nanoscale; 2017 Jun; 9(25):8858-8870. PubMed ID: 28632260 [TBL] [Abstract][Full Text] [Related]
11. Clusterin in the protein corona plays a key role in the stealth effect of nanoparticles against phagocytes. Aoyama M; Hata K; Higashisaka K; Nagano K; Yoshioka Y; Tsutsumi Y Biochem Biophys Res Commun; 2016 Nov; 480(4):690-695. PubMed ID: 27983983 [TBL] [Abstract][Full Text] [Related]
12. An environmental route of exposure affects the formation of nanoparticle coronas in blood plasma. Grunér MS; Kauscher U; Linder MB; Monopoli MP J Proteomics; 2016 Mar; 137():52-8. PubMed ID: 26546559 [TBL] [Abstract][Full Text] [Related]
13. Proteomic and Lipidomic Analysis of Nanoparticle Corona upon Contact with Lung Surfactant Reveals Differences in Protein, but Not Lipid Composition. Raesch SS; Tenzer S; Storck W; Rurainski A; Selzer D; Ruge CA; Perez-Gil J; Schaefer UF; Lehr CM ACS Nano; 2015 Dec; 9(12):11872-85. PubMed ID: 26575243 [TBL] [Abstract][Full Text] [Related]
14. The biomolecular corona of gold nanoparticles in a controlled microfluidic environment. Digiacomo L; Palchetti S; Giulimondi F; Pozzi D; Zenezini Chiozzi R; Capriotti AL; Laganà A; Caracciolo G Lab Chip; 2019 Aug; 19(15):2557-2567. PubMed ID: 31243412 [TBL] [Abstract][Full Text] [Related]
15. Person-Specific Biomolecular Coronas Modulate Nanoparticle Interactions with Immune Cells in Human Blood. Ju Y; Kelly HG; Dagley LF; Reynaldi A; Schlub TE; Spall SK; Bell CA; Cui J; Mitchell AJ; Lin Z; Wheatley AK; Thurecht KJ; Davenport MP; Webb AI; Caruso F; Kent SJ ACS Nano; 2020 Nov; 14(11):15723-15737. PubMed ID: 33112593 [TBL] [Abstract][Full Text] [Related]
16. Protein Nanoparticle Charge and Hydrophobicity Govern Protein Corona and Macrophage Uptake. Pustulka SM; Ling K; Pish SL; Champion JA ACS Appl Mater Interfaces; 2020 Oct; 12(43):48284-48295. PubMed ID: 33054178 [TBL] [Abstract][Full Text] [Related]
17. Impact of Surface-Engineered ZnO Nanoparticles on Protein Corona Configuration and Their Interactions With Biological System. Srivastav AK; Dhiman N; Khan H; Srivastav AK; Yadav SK; Prakash J; Arjaria N; Singh D; Yadav S; Patnaik S; Kumar M J Pharm Sci; 2019 May; 108(5):1872-1889. PubMed ID: 30615879 [TBL] [Abstract][Full Text] [Related]
18. Polymer-coated nanoparticle protein corona formation potentiates phagocytosis of bacteria by innate immune cells and inhibits coagulation in human plasma. Ortega VA; Bahniuk MS; Memon S; Unsworth LD; Stafford JL; Goss GG Biointerphases; 2020 Sep; 15(5):051003. PubMed ID: 32957792 [TBL] [Abstract][Full Text] [Related]
19. The protein corona on nanoparticles as viewed from a nanoparticle-sizing perspective. Wang H; Lin Y; Nienhaus K; Nienhaus GU Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2018 Jul; 10(4):e1500. PubMed ID: 29071798 [TBL] [Abstract][Full Text] [Related]
20. Effect of polyethyleneglycol (PEG) chain length on the bio-nano-interactions between PEGylated lipid nanoparticles and biological fluids: from nanostructure to uptake in cancer cells. Pozzi D; Colapicchioni V; Caracciolo G; Piovesana S; Capriotti AL; Palchetti S; De Grossi S; Riccioli A; Amenitsch H; Laganà A Nanoscale; 2014 Mar; 6(5):2782-92. PubMed ID: 24463404 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]