These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 26378872)
1. Impact of nanoscale zero valent iron on bacteria is growth phase dependent. Chaithawiwat K; Vangnai A; McEvoy JM; Pruess B; Krajangpan S; Khan E Chemosphere; 2016 Feb; 144():352-9. PubMed ID: 26378872 [TBL] [Abstract][Full Text] [Related]
2. Role of oxidative stress in inactivation of Escherichia coli BW25113 by nanoscale zero-valent iron. Chaithawiwat K; Vangnai A; McEvoy JM; Pruess B; Krajangpan S; Khan E Sci Total Environ; 2016 Sep; 565():857-862. PubMed ID: 26953142 [TBL] [Abstract][Full Text] [Related]
3. The dual effects of carboxymethyl cellulose on the colloidal stability and toxicity of nanoscale zero-valent iron. Dong H; Xie Y; Zeng G; Tang L; Liang J; He Q; Zhao F; Zeng Y; Wu Y Chemosphere; 2016 Feb; 144():1682-9. PubMed ID: 26519799 [TBL] [Abstract][Full Text] [Related]
4. Inactivation and magnetic separation of bacteria from liquid suspensions using electrosprayed and nonelectrosprayed nZVI particles: observations and mechanisms. Chen Q; Gao M; Li J; Shen F; Wu Y; Xu Z; Yao M Environ Sci Technol; 2012 Feb; 46(4):2360-7. PubMed ID: 22264123 [TBL] [Abstract][Full Text] [Related]
5. Toxicity of sulfide-modified nanoscale zero-valent iron to Escherichia coli in aqueous solutions. Cheng Y; Dong H; Lu Y; Hou K; Wang Y; Ning Q; Li L; Wang B; Zhang L; Zeng G Chemosphere; 2019 Apr; 220():523-530. PubMed ID: 30594805 [TBL] [Abstract][Full Text] [Related]
6. Effect of natural organic matter on toxicity and reactivity of nano-scale zero-valent iron. Chen J; Xiu Z; Lowry GV; Alvarez PJ Water Res; 2011 Feb; 45(5):1995-2001. PubMed ID: 21232782 [TBL] [Abstract][Full Text] [Related]
7. Membrane Alterations in Pseudomonas putida F1 Exposed to Nanoscale Zerovalent Iron: Effects of Short-Term and Repetitive nZVI Exposure. Kotchaplai P; Khan E; Vangnai AS Environ Sci Technol; 2017 Jul; 51(14):7804-7813. PubMed ID: 28648065 [TBL] [Abstract][Full Text] [Related]
8. Bacteriostatic impact of nanoscale zero-valent iron against pathogenic bacteria in the municipal wastewater. Sadek AH; Asker MS; Abdelhamid SA Biologia (Bratisl); 2021; 76(9):2785-2809. PubMed ID: 34219748 [TBL] [Abstract][Full Text] [Related]
9. Novel assay for the toxicity evaluation of nanoscale zero-valent iron and derived nanomaterials based on lipid peroxidation in bacterial species. Semerád J; Čvančarová M; Filip J; Kašlík J; Zlotá J; Soukupová J; Cajthaml T Chemosphere; 2018 Dec; 213():568-577. PubMed ID: 30268053 [TBL] [Abstract][Full Text] [Related]
10. Toxicity assessment of zero valent iron nanoparticles on Artemia salina. Kumar D; Roy R; Parashar A; Raichur AM; Chandrasekaran N; Mukherjee A; Mukherjee A Environ Toxicol; 2017 May; 32(5):1617-1627. PubMed ID: 28101988 [TBL] [Abstract][Full Text] [Related]
11. Use of zero-valent iron nanoparticles in inactivating microbes. Diao M; Yao M Water Res; 2009 Dec; 43(20):5243-51. PubMed ID: 19783027 [TBL] [Abstract][Full Text] [Related]
12. The impact of nanoscale zero-valent iron particles on soil microbial communities is soil dependent. Gómez-Sagasti MT; Epelde L; Anza M; Urra J; Alkorta I; Garbisu C J Hazard Mater; 2019 Feb; 364():591-599. PubMed ID: 30390579 [TBL] [Abstract][Full Text] [Related]
13. A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI): Behavior, transport and impacts on microbial communities. Lefevre E; Bossa N; Wiesner MR; Gunsch CK Sci Total Environ; 2016 Sep; 565():889-901. PubMed ID: 26897610 [TBL] [Abstract][Full Text] [Related]
14. Evaluating phytotoxicity of bare and starch-stabilized zero-valent iron nanoparticles in mung bean. Sun Y; Jing R; Zheng F; Zhang S; Jiao W; Wang F Chemosphere; 2019 Dec; 236():124336. PubMed ID: 31310976 [TBL] [Abstract][Full Text] [Related]
15. Ageing decreases the phytotoxicity of zero-valent iron nanoparticles in soil cultivated with Oryza sativa. Wang J; Fang Z; Cheng W; Tsang PE; Zhao D Ecotoxicology; 2016 Aug; 25(6):1202-10. PubMed ID: 27207497 [TBL] [Abstract][Full Text] [Related]
16. Dissolved iron released from nanoscale zero-valent iron (nZVI) activates the defense system in bacterium Pseudomonas putida, leading to high tolerance to oxidative stress. Yeap CSY; Nguyen NHA; Spanek R; Too CC; Benes V; Provaznik J; Cernik M; Sevcu A J Hazard Mater; 2022 Oct; 439():129627. PubMed ID: 35872458 [TBL] [Abstract][Full Text] [Related]
17. Bacterial effects and interfacial inactivation mechanism of nZVI/Pd on Pseudomonas putida strain. Lv Y; Niu Z; Chen Y; Hu Y Water Res; 2017 May; 115():297-308. PubMed ID: 28285239 [TBL] [Abstract][Full Text] [Related]
18. Performance and toxicity assessment of nanoscale zero valent iron particles in the remediation of contaminated soil: A review. Xue W; Huang D; Zeng G; Wan J; Cheng M; Zhang C; Hu C; Li J Chemosphere; 2018 Nov; 210():1145-1156. PubMed ID: 30208540 [TBL] [Abstract][Full Text] [Related]
19. Tactic response of bacteria to zero-valent iron nanoparticles. Ortega-Calvo JJ; Jimenez-Sanchez C; Pratarolo P; Pullin H; Scott TB; Thompson IP Environ Pollut; 2016 Jun; 213():438-445. PubMed ID: 26967351 [TBL] [Abstract][Full Text] [Related]
20. Mitigation of Fe(0) nanoparticles toxicity to Trichosporon cutaneum by humic substances. Pádrová K; Maťátková O; Šiková M; Füzik T; Masák J; Čejková A; Jirků V N Biotechnol; 2016 Jan; 33(1):144-52. PubMed ID: 26455640 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]