These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 26378902)
1. Smooth muscle tissue engineering in crosslinked electrospun gelatin scaffolds. Elsayed Y; Lekakou C; Labeed F; Tomlins P J Biomed Mater Res A; 2016 Jan; 104(1):313-21. PubMed ID: 26378902 [TBL] [Abstract][Full Text] [Related]
2. Fabrication and characterisation of biomimetic, electrospun gelatin fibre scaffolds for tunica media-equivalent, tissue engineered vascular grafts. Elsayed Y; Lekakou C; Labeed F; Tomlins P Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():473-83. PubMed ID: 26838874 [TBL] [Abstract][Full Text] [Related]
3. Modeling, simulations, and optimization of smooth muscle cell tissue engineering for the production of vascular grafts. Elsayed Y; Lekakou C; Tomlins P Biotechnol Bioeng; 2019 Jun; 116(6):1509-1522. PubMed ID: 30737955 [TBL] [Abstract][Full Text] [Related]
5. Controlled heparin conjugation on electrospun poly(ε-caprolactone)/gelatin fibers for morphology-dependent protein delivery and enhanced cellular affinity. Lee J; Yoo JJ; Atala A; Lee SJ Acta Biomater; 2012 Jul; 8(7):2549-58. PubMed ID: 22465575 [TBL] [Abstract][Full Text] [Related]
6. Electrospun tecophilic/gelatin nanofibers with potential for small diameter blood vessel tissue engineering. Vatankhah E; Prabhakaran MP; Semnani D; Razavi S; Morshed M; Ramakrishna S Biopolymers; 2014 Dec; 101(12):1165-80. PubMed ID: 25042000 [TBL] [Abstract][Full Text] [Related]
7. Effects of pulsatile bioreactor culture on vascular smooth muscle cells seeded on electrospun poly (lactide-co-ε-caprolactone) scaffold. Mun CH; Jung Y; Kim SH; Kim HC; Kim SH Artif Organs; 2013 Dec; 37(12):E168-78. PubMed ID: 23834728 [TBL] [Abstract][Full Text] [Related]
8. Electrospun oriented gelatin-hydroxyapatite fiber scaffolds for bone tissue engineering. Salifu AA; Lekakou C; Labeed FH J Biomed Mater Res A; 2017 Jul; 105(7):1911-1926. PubMed ID: 28263431 [TBL] [Abstract][Full Text] [Related]
9. Dynamic culturing of smooth muscle cells in tubular poly(trimethylene carbonate) scaffolds for vascular tissue engineering. Song Y; Wennink JW; Kamphuis MM; Sterk LM; Vermes I; Poot AA; Feijen J; Grijpma DW Tissue Eng Part A; 2011 Feb; 17(3-4):381-7. PubMed ID: 20807005 [TBL] [Abstract][Full Text] [Related]
10. In vitro evaluation of crosslinked electrospun fish gelatin scaffolds. Gomes SR; Rodrigues G; Martins GG; Henriques CM; Silva JC Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1219-27. PubMed ID: 23827564 [TBL] [Abstract][Full Text] [Related]
11. Gelatin - Oxidized carboxymethyl cellulose blend based tubular electrospun scaffold for vascular tissue engineering. Joy J; Pereira J; Aid-Launais R; Pavon-Djavid G; Ray AR; Letourneur D; Meddahi-Pellé A; Gupta B Int J Biol Macromol; 2018 Feb; 107(Pt B):1922-1935. PubMed ID: 29032216 [TBL] [Abstract][Full Text] [Related]
12. Fiber diameters control osteoblastic cell migration and differentiation in electrospun gelatin. Sisson K; Zhang C; Farach-Carson MC; Chase DB; Rabolt JF J Biomed Mater Res A; 2010 Sep; 94(4):1312-20. PubMed ID: 20694999 [TBL] [Abstract][Full Text] [Related]
13. Effective seeding of smooth muscle cells into tubular poly(trimethylene carbonate) scaffolds for vascular tissue engineering. Song Y; Wennink JW; Kamphuis MM; Vermes I; Poot AA; Feijen J; Grijpma DW J Biomed Mater Res A; 2010 Nov; 95(2):440-6. PubMed ID: 20648539 [TBL] [Abstract][Full Text] [Related]
14. Tubular scaffolds of gelatin and poly(ε-caprolactone)-block-poly(γ-glutamic acid) blending hydrogel for the proliferation of the primary intestinal smooth muscle cells of rats. Jwo SC; Chiu CH; Tang SJ; Hsieh MF Biomed Mater; 2013 Dec; 8(6):065002. PubMed ID: 24225182 [TBL] [Abstract][Full Text] [Related]
15. Flexible and elastic porous poly(trimethylene carbonate) structures for use in vascular tissue engineering. Song Y; Kamphuis MM; Zhang Z; Sterk LM; Vermes I; Poot AA; Feijen J; Grijpma DW Acta Biomater; 2010 Apr; 6(4):1269-77. PubMed ID: 19818420 [TBL] [Abstract][Full Text] [Related]
16. Multilayer cellular stacks of gelatin-hydroxyapatite fiber scaffolds for bone tissue engineering. Salifu AA; Lekakou C; Labeed F J Biomed Mater Res A; 2017 Mar; 105(3):779-789. PubMed ID: 27784129 [TBL] [Abstract][Full Text] [Related]
17. The fabrication of double layer tubular vascular tissue engineering scaffold via coaxial electrospinning and its 3D cell coculture. Ye L; Cao J; Chen L; Geng X; Zhang AY; Guo LR; Gu YQ; Feng ZG J Biomed Mater Res A; 2015 Dec; 103(12):3863-71. PubMed ID: 26123627 [TBL] [Abstract][Full Text] [Related]
18. Influence of mechanical stimulation in the development of a medial equivalent tissue-engineered vascular construct using a gelatin-g-vinyl acetate co-polymer scaffold. Thomas LV; Nair PD J Biomater Sci Polym Ed; 2012; 23(16):2069-87. PubMed ID: 22104760 [TBL] [Abstract][Full Text] [Related]
19. Investigation of different cross-linking approaches on 3D gelatin scaffolds for tissue engineering application: A comparative analysis. Shankar KG; Gostynska N; Montesi M; Panseri S; Sprio S; Kon E; Marcacci M; Tampieri A; Sandri M Int J Biol Macromol; 2017 Feb; 95():1199-1209. PubMed ID: 27836656 [TBL] [Abstract][Full Text] [Related]
20. Nanometer-sized extracellular matrix coating on polymer-based scaffold for tissue engineering applications. Uchida N; Sivaraman S; Amoroso NJ; Wagner WR; Nishiguchi A; Matsusaki M; Akashi M; Nagatomi J J Biomed Mater Res A; 2016 Jan; 104(1):94-103. PubMed ID: 26194176 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]