These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 26378960)

  • 1. Sub-supercritical liquefaction of rice stalk for the production of bio-oil: Effect of solvents.
    Li R; Li B; Yang T; Kai X; Wang W; Jie Y; Zhang Y; Chen G
    Bioresour Technol; 2015 Dec; 198():94-100. PubMed ID: 26378960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of residence time on two-step liquefaction of rice straw in a CO
    Yang T; Wang J; Li B; Kai X; Li R
    Bioresour Technol; 2017 Apr; 229():143-151. PubMed ID: 28110231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct liquefaction of Dunaliella tertiolecta for bio-oil in sub/supercritical ethanol-water.
    Chen Y; Wu Y; Zhang P; Hua D; Yang M; Li C; Chen Z; Liu J
    Bioresour Technol; 2012 Nov; 124():190-8. PubMed ID: 22989646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Behaviors of rice straw two-step liquefaction with sub/supercritical ethanol in carbon dioxide atmosphere.
    Yang T; Wang J; Li B; Kai X; Xing W; Li R
    Bioresour Technol; 2018 Jun; 258():287-294. PubMed ID: 29547851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sub/supercritical liquefaction of oil palm fruit press fiber for the production of bio-oil: effect of solvents.
    Mazaheri H; Lee KT; Bhatia S; Mohamed AR
    Bioresour Technol; 2010 Oct; 101(19):7641-7. PubMed ID: 20510608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of glycerol as co-solvent on yields of bio-oil from rice straw through hydrothermal liquefaction.
    Cao L; Zhang C; Hao S; Luo G; Zhang S; Chen J
    Bioresour Technol; 2016 Nov; 220():471-478. PubMed ID: 27611031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conversion of rice straw to monomeric phenols under supercritical methanol and ethanol.
    Singh R; Srivastava V; Chaudhary K; Gupta P; Prakash A; Balagurumurthy B; Bhaskar T
    Bioresour Technol; 2015; 188():280-6. PubMed ID: 25603730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydro-liquefaction of microcrystalline cellulose, xylan and industrial lignin in different supercritical solvents.
    Li Q; Liu D; Hou X; Wu P; Song L; Yan Z
    Bioresour Technol; 2016 Nov; 219():281-288. PubMed ID: 27497089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of liquefaction parameters of cellulose in supercritical solvents of methanol, ethanol and acetone on products yield and compositions.
    Wang X; Xie XA; Sun J; Liao W
    Bioresour Technol; 2019 Mar; 275():123-129. PubMed ID: 30579102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study on hydrothermal liquefaction of antibiotic residues for bio-oil in ethanol-water system.
    Yang J; Hong C; Li Z; Xing Y; Zhao X
    Waste Manag; 2021 Feb; 120():164-174. PubMed ID: 33307361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of catalysts and solvents on liquefaction of Onopordum heteracanthum for production of bio-oils.
    Durak H; Aysu T
    Bioresour Technol; 2014 Aug; 166():309-17. PubMed ID: 24926604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic hydrothermal liquefaction of rice straw for production of monomers phenol over metal supported mesoporous catalyst.
    Ding YJ; Zhao CX; Liu ZC
    Bioresour Technol; 2019 Dec; 294():122097. PubMed ID: 31539853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Liquefaction of cotton seed in sub-critical water/ethanol with modified medical stone for bio-oil.
    Yan X; Wang B; Zhang J
    Bioresour Technol; 2015 Dec; 197():120-7. PubMed ID: 26318931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-pot transformation of lignocellulosic biomass into crude bio-oil with metal chlorides via hydrothermal and supercritical ethanol processing.
    Hao N; Alper K; Tekin K; Karagoz S; Ragauskas AJ
    Bioresour Technol; 2019 Sep; 288():121500. PubMed ID: 31150971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-liquefaction of microalgae and lignocellulosic biomass in subcritical water.
    Gai C; Li Y; Peng N; Fan A; Liu Z
    Bioresour Technol; 2015 Jun; 185():240-5. PubMed ID: 25770472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Resolution Mass Spectrometry Study of the Bio-Oil Samples Produced by Thermal Liquefaction of Microalgae in Different Solvents.
    Kostyukevich Y; Vlaskin M; Zherebker A; Grigorenko A; Borisova L; Nikolaev E
    J Am Soc Mass Spectrom; 2019 Apr; 30(4):605-614. PubMed ID: 30761476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bio-oil production from hydrothermal liquefaction of Pteris vittata L.: Effects of operating temperatures and energy recovery.
    Chen J
    Bioresour Technol; 2018 Oct; 265():320-327. PubMed ID: 29909362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Liquefaction of cornstalk in hot-compressed phenol-water medium to phenolic feedstock for the synthesis of phenol-formaldehyde resin.
    Wang M; Xu CC; Leitch M
    Bioresour Technol; 2009 Apr; 100(7):2305-7. PubMed ID: 19058960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrothermal liquefaction of Litsea cubeba seed to produce bio-oils.
    Wang F; Chang Z; Duan P; Yan W; Xu Y; Zhang L; Miao J; Fan Y
    Bioresour Technol; 2013 Dec; 149():509-15. PubMed ID: 24140857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermoliquefaction of palm oil fiber (Elaeis sp.) using supercritical ethanol.
    Oliveira AL; Almeida PS; Campos MC; Franceschi E; Dariva C; Borges GR
    Bioresour Technol; 2017 Apr; 230():1-7. PubMed ID: 28119153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.