These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Cognitive control predicts use of model-based reinforcement learning. Otto AR; Skatova A; Madlon-Kay S; Daw ND J Cogn Neurosci; 2015 Feb; 27(2):319-33. PubMed ID: 25170791 [TBL] [Abstract][Full Text] [Related]
6. Novelty is not surprise: Human exploratory and adaptive behavior in sequential decision-making. Xu HA; Modirshanechi A; Lehmann MP; Gerstner W; Herzog MH PLoS Comput Biol; 2021 Jun; 17(6):e1009070. PubMed ID: 34081705 [TBL] [Abstract][Full Text] [Related]
7. Reward and avoidance learning in the context of aversive environments and possible implications for depressive symptoms. Sebold M; Garbusow M; Jetzschmann P; Schad DJ; Nebe S; Schlagenhauf F; Heinz A; Rapp M; Romanczuk-Seiferth N Psychopharmacology (Berl); 2019 Aug; 236(8):2437-2449. PubMed ID: 31254091 [TBL] [Abstract][Full Text] [Related]
11. Flexibility to contingency changes distinguishes habitual and goal-directed strategies in humans. Lee JJ; Keramati M PLoS Comput Biol; 2017 Sep; 13(9):e1005753. PubMed ID: 28957319 [TBL] [Abstract][Full Text] [Related]
12. Model based planners reflect on their model-free propensities. Moran R; Keramati M; Dolan RJ PLoS Comput Biol; 2021 Jan; 17(1):e1008552. PubMed ID: 33411724 [TBL] [Abstract][Full Text] [Related]
13. A new computational account of cognitive control over reinforcement-based decision-making: Modeling of a probabilistic learning task. Zendehrouh S Neural Netw; 2015 Nov; 71():112-23. PubMed ID: 26339919 [TBL] [Abstract][Full Text] [Related]
14. Predicting psychosis across diagnostic boundaries: Behavioral and computational modeling evidence for impaired reinforcement learning in schizophrenia and bipolar disorder with a history of psychosis. Strauss GP; Thaler NS; Matveeva TM; Vogel SJ; Sutton GP; Lee BG; Allen DN J Abnorm Psychol; 2015 Aug; 124(3):697-708. PubMed ID: 25894442 [TBL] [Abstract][Full Text] [Related]
15. Credit Assignment in a Motor Decision Making Task Is Influenced by Agency and Not Sensory Prediction Errors. Parvin DE; McDougle SD; Taylor JA; Ivry RB J Neurosci; 2018 May; 38(19):4521-4530. PubMed ID: 29650698 [TBL] [Abstract][Full Text] [Related]
16. The curse of planning: dissecting multiple reinforcement-learning systems by taxing the central executive. Otto AR; Gershman SJ; Markman AB; Daw ND Psychol Sci; 2013 May; 24(5):751-61. PubMed ID: 23558545 [TBL] [Abstract][Full Text] [Related]
18. Human decision making balances reward maximization and policy compression. Lai L; Gershman SJ PLoS Comput Biol; 2024 Apr; 20(4):e1012057. PubMed ID: 38669280 [TBL] [Abstract][Full Text] [Related]
19. Computational evidence for hierarchically structured reinforcement learning in humans. Eckstein MK; Collins AGE Proc Natl Acad Sci U S A; 2020 Nov; 117(47):29381-29389. PubMed ID: 33229518 [TBL] [Abstract][Full Text] [Related]
20. Computational and behavioral markers of model-based decision making in childhood. Smid CR; Kool W; Hauser TU; Steinbeis N Dev Sci; 2023 Mar; 26(2):e13295. PubMed ID: 35689563 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]