BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 2637946)

  • 1. The role of fibrinolysis during reperfusion of ischemic skeletal muscle.
    Quiñones-Baldrich WJ
    Microcirc Endothelium Lymphatics; 1989; 5(3-5):299-314. PubMed ID: 2637946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased ischemia-reperfusion blood flow impairs the skeletal muscle contractile function.
    Ikebe K; Kato T; Yamaga M; Hirose J; Tsuchida T; Takagi K
    J Surg Res; 2001 Jul; 99(1):1-6. PubMed ID: 11421597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of hypofibrinogenemia and fibrinolysis on skeletal muscle function after ischemia and reperfusion.
    Colburn MD; Gelabert HA; Nowara H; Hajjar GE; Moore WS; Quiñones-Baldrich WJ
    J Surg Res; 1994 Jan; 56(1):77-81. PubMed ID: 8277773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The relationship between blood flow, development of edema and leukocyte accumulation in post-ischemic rat skeletal muscle.
    Sirsjö A; Söderkvist P; Gustafsson U; Lewis DH; Nylander G
    Microcirc Endothelium Lymphatics; 1990 Feb; 6(1):21-34. PubMed ID: 2162471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of dichloroacetate in a rabbit model of acute hind-limb ischemia and reperfusion.
    Wilson JS; Rushing G; Johnson BL; Kline JA; Parker JL; Bowser A; Bandyk DF; Back MR
    J Am Coll Surg; 2003 Oct; 197(4):591-5. PubMed ID: 14522328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Controlled reperfusion of the extremities for preventing local and systemic damage after prolonged ischemia. An experimental study with the swine model].
    Mitrev Z; Ihnken K; Poloczek Y; Hallmann R; Herold H; Unkelbach U; Zimmer G; Freisleben HJ; Beyersdorf S; Beyersdorf F
    Zentralbl Chir; 1996; 121(9):774-87. PubMed ID: 9012238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microvascular effects of complement blockade with soluble recombinant CR1 on ischemia/reperfusion injury of skeletal muscle.
    Pemberton M; Anderson G; Vĕtvicka V; Justus DE; Ross GD
    J Immunol; 1993 Jun; 150(11):5104-13. PubMed ID: 8496606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Tissue protection by elimination of oxygen free radicals in the post-ischemic reperfusion phase].
    Feller AM; Roth AC; Russell RC
    Handchir Mikrochir Plast Chir; 1990 Jan; 22(1):4-13. PubMed ID: 2155863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ischemic preconditioning prevents skeletal muscle tissue injury, but not nerve lesion upon tourniquet-induced ischemia.
    Schoen M; Rotter R; Gierer P; Gradl G; Strauss U; Jonas L; Mittlmeier T; Vollmar B
    J Trauma; 2007 Oct; 63(4):788-97. PubMed ID: 18090007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Ischemic preconditioning improves postischemic function, but not energy metabolism of skeletal muscles].
    Gürke L; Marx A; Sutter PM; Frentzel A; Martinoli S; Landmann J; Heberer M
    Swiss Surg; 1995; (2):107-9. PubMed ID: 8590287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Pathological changes in neuromuscular junction during ischemia-reperfusion in rat skeletal muscle].
    Wang X; Kan S; Zhang B
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2006 Nov; 20(11):1103-8. PubMed ID: 17191578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of heparin in reducing skeletal muscle infarction in ischemia-reperfusion.
    Hobson RW; Neville R; Watanabe B; Canady J; Wright JG; Belkin M
    Microcirc Endothelium Lymphatics; 1989; 5(3-5):259-76. PubMed ID: 2637945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lower limb ischemia-reperfusion injury triggers a systemic inflammatory response and multiple organ dysfunction.
    Yassin MM; Harkin DW; Barros D'Sa AA; Halliday MI; Rowlands BJ
    World J Surg; 2002 Jan; 26(1):115-21. PubMed ID: 11898044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of tissue lactic acid and ATP levels on postischemic recovery in rabbit skeletal muscle.
    Hagberg H; Jennische E; Haljamäe H
    Circ Shock; 1985; 16(4):363-74. PubMed ID: 3836028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contractile and metabolic function following an ischemia-reperfusion injury in skeletal muscle: influence of oxygen free radical scavengers.
    Long JW; Laster JL; Stevens RP; Silver WP; Silver D
    Microcirc Endothelium Lymphatics; 1989; 5(3-5):351-63. PubMed ID: 2637948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of ischemic intervals on neuromuscular recovery in a porcine (Sus scrofa) survival model of extremity vascular injury.
    Burkhardt GE; Gifford SM; Propper B; Spencer JR; Williams K; Jones L; Sumner N; Cowart J; Rasmussen TE
    J Vasc Surg; 2011 Jan; 53(1):165-73. PubMed ID: 20965686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Skeletal muscle function after ischemia: "no reflow" versus reperfusion injury.
    Quiñones-Baldrich WJ; Chervu A; Hernandez JJ; Colburn M; Moore WS
    J Surg Res; 1991 Jul; 51(1):5-12. PubMed ID: 2067359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rabbit rectus femoris muscle for ischemia-reperfusion studies: an improved model.
    Hoballah JJ; Mohan CR; Schipper PH; Chalmers RT; Corry DC; Corson JD
    J Surg Res; 1996 Nov; 66(1):21-4. PubMed ID: 8954826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemorrhagic shock worsens neuromuscular recovery in a porcine model of hind limb vascular injury and ischemia-reperfusion.
    Hancock HM; Stannard A; Burkhardt GE; Williams K; Dixon P; Cowart J; Spencer J; Rasmussen TE
    J Vasc Surg; 2011 Apr; 53(4):1052-62; discussion 1062. PubMed ID: 21255962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Microcirculation of skeletal muscle after ischemia and reperfusion].
    Menger MD; Messmer K
    Wien Med Wochenschr; 1993; 143(7-8):148-58. PubMed ID: 8379164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.