These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 26379631)

  • 1. Formate, acetate, and propionate as substrates for sulfate reduction in sub-arctic sediments of Southwest Greenland.
    Glombitza C; Jaussi M; Røy H; Seidenkrantz MS; Lomstein BA; Jørgensen BB
    Front Microbiol; 2015; 6():846. PubMed ID: 26379631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acetate, lactate, propionate, and isobutyrate as electron donors for iron and sulfate reduction in Arctic marine sediments, Svalbard.
    Finke N; Vandieken V; Jørgensen BB
    FEMS Microbiol Ecol; 2007 Jan; 59(1):10-22. PubMed ID: 17069623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response of fermentation and sulfate reduction to experimental temperature changes in temperate and Arctic marine sediments.
    Finke N; Jørgensen BB
    ISME J; 2008 Aug; 2(8):815-29. PubMed ID: 18309360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formate and Hydrogen as Electron Shuttles in Terminal Fermentations in an Oligotrophic Freshwater Lake Sediment.
    Montag D; Schink B
    Appl Environ Microbiol; 2018 Oct; 84(20):. PubMed ID: 30097443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relative importance of trophic group concentrations during anaerobic degradation of volatile fatty acids.
    Voolapalli RK; Stuckey DC
    Appl Environ Microbiol; 1999 Nov; 65(11):5009-16. PubMed ID: 10543816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of Acetate, Propionate, and Butyrate for Reduction of Nitrate and Sulfate and Methanogenesis in Microcosms and Bioreactors Simulating an Oil Reservoir.
    Chen C; Shen Y; An D; Voordouw G
    Appl Environ Microbiol; 2017 Apr; 83(7):. PubMed ID: 28130297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of predictions of volatile fatty acid production rates by the Molly cow model.
    Ghimire S; Gregorini P; Hanigan MD
    J Dairy Sci; 2014; 97(1):354-62. PubMed ID: 24268399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Build-up and impact of volatile fatty acids on E. coli and A. lumbricoides during co-digestion of urine diverting dehydrating toilet (UDDT-F) faeces.
    Riungu J; Ronteltap M; van Lier JB
    J Environ Manage; 2018 Jun; 215():22-31. PubMed ID: 29550544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidation of short-chain fatty acids by sulfate-reducing bacteria in freshwater and in marine sediments.
    Laanbroek HJ; Pfennig N
    Arch Microbiol; 1981 Jan; 128(3):330-5. PubMed ID: 7212933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of fall turnover on terminal carbon metabolism in lake mendota sediments.
    Phelps TJ; Zeikus JG
    Appl Environ Microbiol; 1985 Nov; 50(5):1285-91. PubMed ID: 16346933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of the anaerobic process: effects of volatile fatty acids.
    Pind PF; Angelidaki I; Ahring BK
    Biotechnol Bioeng; 2003 Jun; 82(7):791-801. PubMed ID: 12701145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sample preparation, preservation, and storage for volatile fatty acid quantification in biogas plants.
    Wagner AO; Markt R; Puempel T; Illmer P; Insam H; Ebner C
    Eng Life Sci; 2017 Feb; 17(2):132-139. PubMed ID: 32624760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The physiological effect of heavy metals and volatile fatty acids on
    Abdel Azim A; Rittmann SKR; Fino D; Bochmann G
    Biotechnol Biofuels; 2018; 11():301. PubMed ID: 30410576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A method for the analysis of acetate turnover in a coastal marine sediment.
    Ansbaek J; Blackburn TH
    Microb Ecol; 1980 Dec; 5(4):253-64. PubMed ID: 24232513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intermediary metabolism of organic matter in the sediments of a eutrophic lake.
    Lovley DR; Klug MJ
    Appl Environ Microbiol; 1982 Mar; 43(3):552-60. PubMed ID: 16345963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic parameters of plasma and ruminal volatile fatty acids in sheep fed alfalfa pellets and genetic correlations with enteric methane emissions1.
    Jonker A; Hickey SM; McEwan JC; Rowe SJ; Janssen PH; MacLean S; Sandoval E; Lewis S; Kjestrup H; Molano G; Agnew M; Young EA; Dodds KG; Knowler K; Pinares-Patiño CS
    J Anim Sci; 2019 Jul; 97(7):2711-2724. PubMed ID: 31212318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of volatile fatty acid (VFA) calcium salts by anaerobic digestion of glucose.
    Li X; Swan JE; Nair GR; Langdon AG
    Biotechnol Appl Biochem; 2015; 62(4):476-82. PubMed ID: 25274086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Representing interconversions among volatile fatty acids in the Molly cow model.
    Ghimire S; Kohn RA; Gregorini P; White RR; Hanigan MD
    J Dairy Sci; 2017 May; 100(5):3658-3671. PubMed ID: 28259412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamics of volatile fatty acid degradation during anaerobic digestion under organic overload stress: The potential to better identify process stability.
    Wu D; Li L; Zhen F; Liu H; Xiao F; Sun Y; Peng X; Li Y; Wang X
    Water Res; 2022 May; 214():118187. PubMed ID: 35184016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo production and molar percentages of volatile fatty acids in the rumen: a quantitative review by an empirical approach.
    Nozière P; Glasser F; Sauvant D
    Animal; 2011 Mar; 5(3):403-14. PubMed ID: 22445407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.