These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
492 related articles for article (PubMed ID: 26379697)
41. Network inference with ensembles of bi-clustering trees. Pliakos K; Vens C BMC Bioinformatics; 2019 Oct; 20(1):525. PubMed ID: 31660848 [TBL] [Abstract][Full Text] [Related]
42. Understanding the implementation of evidence-based care: a structural network approach. Parchman ML; Scoglio CM; Schumm P Implement Sci; 2011 Feb; 6():14. PubMed ID: 21349194 [TBL] [Abstract][Full Text] [Related]
43. KISL: knowledge-injected semi-supervised learning for biological co-expression network modules. Xiao G; Guan R; Cao Y; Huang Z; Xu Y Front Genet; 2023; 14():1151962. PubMed ID: 37205122 [TBL] [Abstract][Full Text] [Related]
44. Efficient rewirings for enhancing synchronizability of dynamical networks. Rad AA; Jalili M; Hasler M Chaos; 2008 Sep; 18(3):037104. PubMed ID: 19045478 [TBL] [Abstract][Full Text] [Related]
45. Protein complex prediction with RNSC. King AD; Pržulj N; Jurisica I Methods Mol Biol; 2012; 804():297-312. PubMed ID: 22144160 [TBL] [Abstract][Full Text] [Related]
46. Using weighted fixed neural networks for unsupervised fuzzy clustering. Hamid Muhammed H Int J Neural Syst; 2002 Dec; 12(6):425-34. PubMed ID: 12528194 [TBL] [Abstract][Full Text] [Related]
47. Interactive, multiscale navigation of large and complicated biological networks. Praneenararat T; Takagi T; Iwasaki W Bioinformatics; 2011 Apr; 27(8):1121-7. PubMed ID: 21349867 [TBL] [Abstract][Full Text] [Related]
48. Equal opportunity for low-degree network nodes: a PageRank-based method for protein target identification in metabolic graphs. Bánky D; Iván G; Grolmusz V PLoS One; 2013; 8(1):e54204. PubMed ID: 23382878 [TBL] [Abstract][Full Text] [Related]
49. C-DEVA: Detection, evaluation, visualization and annotation of clusters from biological networks. Li M; Tang Y; Wu X; Wang J; Wu FX; Pan Y Biosystems; 2016 Dec; 150():78-86. PubMed ID: 27530307 [TBL] [Abstract][Full Text] [Related]
50. Structure discovery in PPI networks using pattern-based network decomposition. Bachman P; Liu Y Bioinformatics; 2009 Jul; 25(14):1814-21. PubMed ID: 19447784 [TBL] [Abstract][Full Text] [Related]
51. A fast hierarchical clustering algorithm for functional modules discovery in protein interaction networks. Wang J; Li M; Chen J; Pan Y IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(3):607-20. PubMed ID: 20733244 [TBL] [Abstract][Full Text] [Related]
52. An in silico method for detecting overlapping functional modules from composite biological networks. Maraziotis IA; Dimitrakopoulou K; Bezerianos A BMC Syst Biol; 2008 Nov; 2():93. PubMed ID: 18976494 [TBL] [Abstract][Full Text] [Related]
53. A Seed Expansion Graph Clustering Method for Protein Complexes Detection in Protein Interaction Networks. Wang J; Zheng W; Qian Y; Liang J Molecules; 2017 Dec; 22(12):. PubMed ID: 29292776 [TBL] [Abstract][Full Text] [Related]
54. Predicting protein complexes from weighted protein-protein interaction graphs with a novel unsupervised methodology: Evolutionary enhanced Markov clustering. Theofilatos K; Pavlopoulou N; Papasavvas C; Likothanassis S; Dimitrakopoulos C; Georgopoulos E; Moschopoulos C; Mavroudi S Artif Intell Med; 2015 Mar; 63(3):181-9. PubMed ID: 25765008 [TBL] [Abstract][Full Text] [Related]
55. Predicting lncRNA-disease associations using network topological similarity based on deep mining heterogeneous networks. Zhang H; Liang Y; Peng C; Han S; Du W; Li Y Math Biosci; 2019 Sep; 315():108229. PubMed ID: 31323239 [TBL] [Abstract][Full Text] [Related]
56. Comparison of topological clustering within protein networks using edge metrics that evaluate full sequence, full structure, and active site microenvironment similarity. Leuthaeuser JB; Knutson ST; Kumar K; Babbitt PC; Fetrow JS Protein Sci; 2015 Sep; 24(9):1423-39. PubMed ID: 26073648 [TBL] [Abstract][Full Text] [Related]
57. A multilevel gamma-clustering layout algorithm for visualization of biological networks. Hruz T; Wyss M; Lucas C; Laule O; von Rohr P; Zimmermann P; Bleuler S Adv Bioinformatics; 2013; 2013():920325. PubMed ID: 23864855 [TBL] [Abstract][Full Text] [Related]
58. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data. Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796 [TBL] [Abstract][Full Text] [Related]
59. Co-clustering directed graphs to discover asymmetries and directional communities. Rohe K; Qin T; Yu B Proc Natl Acad Sci U S A; 2016 Nov; 113(45):12679-12684. PubMed ID: 27791058 [TBL] [Abstract][Full Text] [Related]
60. Range-limited centrality measures in complex networks. Ercsey-Ravasz M; Lichtenwalter RN; Chawla NV; Toroczkai Z Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066103. PubMed ID: 23005158 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]