These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 26380080)

  • 1. The fracture mechanics of human bone: influence of disease and treatment.
    Zimmermann EA; Busse B; Ritchie RO
    Bonekey Rep; 2015; 4():743. PubMed ID: 26380080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoscale deformation mechanisms and yield properties of hydrated bone extracellular matrix.
    Schwiedrzik J; Taylor A; Casari D; Wolfram U; Zysset P; Michler J
    Acta Biomater; 2017 Sep; 60():302-314. PubMed ID: 28754646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bone as a Structural Material.
    Zimmermann EA; Ritchie RO
    Adv Healthc Mater; 2015 Jun; 4(9):1287-304. PubMed ID: 25865873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Age-related changes in the plasticity and toughness of human cortical bone at multiple length scales.
    Zimmermann EA; Schaible E; Bale H; Barth HD; Tang SY; Reichert P; Busse B; Alliston T; Ager JW; Ritchie RO
    Proc Natl Acad Sci U S A; 2011 Aug; 108(35):14416-21. PubMed ID: 21873221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toughness and damage susceptibility in human cortical bone is proportional to mechanical inhomogeneity at the osteonal-level.
    Katsamenis OL; Jenkins T; Thurner PJ
    Bone; 2015 Jul; 76():158-68. PubMed ID: 25863123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microtensile failure mechanisms in lamellar bone: Influence of fibrillar orientation, specimen size and hydration.
    Casari D; Kochetkova T; Michler J; Zysset P; Schwiedrzik J
    Acta Biomater; 2021 Sep; 131():391-402. PubMed ID: 34175475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fracture resistance of human cortical bone across multiple length-scales at physiological strain rates.
    Zimmermann EA; Gludovatz B; Schaible E; Busse B; Ritchie RO
    Biomaterials; 2014 Jul; 35(21):5472-81. PubMed ID: 24731707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vitamin D deficiency induces early signs of aging in human bone, increasing the risk of fracture.
    Busse B; Bale HA; Zimmermann EA; Panganiban B; Barth HD; Carriero A; Vettorazzi E; Zustin J; Hahn M; Ager JW; Püschel K; Amling M; Ritchie RO
    Sci Transl Med; 2013 Jul; 5(193):193ra88. PubMed ID: 23843449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rising crack-growth-resistance behavior in cortical bone: implications for toughness measurements.
    Vashishth D
    J Biomech; 2004 Jun; 37(6):943-6. PubMed ID: 15111083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The significance of crack-resistance curves to the mixed-mode fracture toughness of human cortical bone.
    Zimmermann EA; Launey ME; Ritchie RO
    Biomaterials; 2010 Jul; 31(20):5297-305. PubMed ID: 20409579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of test environment on the fracture resistance of cortical bone.
    Shin M; Zhang M; Vom Scheidt A; Pelletier MH; Walsh WR; Martens PJ; Kruzic JJ; Busse B; Gludovatz B
    J Mech Behav Biomed Mater; 2022 May; 129():105155. PubMed ID: 35313188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modifications to nano- and microstructural quality and the effects on mechanical integrity in Paget's disease of bone.
    Zimmermann EA; Köhne T; Bale HA; Panganiban B; Gludovatz B; Zustin J; Hahn M; Amling M; Ritchie RO; Busse B
    J Bone Miner Res; 2015 Feb; 30(2):264-73. PubMed ID: 25112610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The true toughness of human cortical bone measured with realistically short cracks.
    Koester KJ; Ager JW; Ritchie RO
    Nat Mater; 2008 Aug; 7(8):672-7. PubMed ID: 18587403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Age-related properties at the microscale affect crack propagation in cortical bone.
    Gustafsson A; Wallin M; Isaksson H
    J Biomech; 2019 Oct; 95():109326. PubMed ID: 31526587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microtensile properties and failure mechanisms of cortical bone at the lamellar level.
    Casari D; Michler J; Zysset P; Schwiedrzik J
    Acta Biomater; 2021 Jan; 120():135-145. PubMed ID: 32428682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fracture behaviour and toughening mechanisms of dry and wet collagen.
    Bose S; Li S; Mele E; Silberschmidt VV
    Acta Biomater; 2022 Apr; 142():174-184. PubMed ID: 35134565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the effects of x-ray irradiation on the hierarchical structure and mechanical properties of human cortical bone.
    Barth HD; Zimmermann EA; Schaible E; Tang SY; Alliston T; Ritchie RO
    Biomaterials; 2011 Dec; 32(34):8892-904. PubMed ID: 21885114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sub-lamellar microcracking and roles of canaliculi in human cortical bone.
    Ebacher V; Guy P; Oxland TR; Wang R
    Acta Biomater; 2012 Mar; 8(3):1093-100. PubMed ID: 22134162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A finite element study evaluating the influence of mineralization distribution and content on the tensile mechanical response of mineralized collagen fibril networks.
    Wang Y; Ural A
    J Mech Behav Biomed Mater; 2019 Dec; 100():103361. PubMed ID: 31493689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of aging on the transverse toughness of human cortical bone: evaluation by R-curves.
    Koester KJ; Barth HD; Ritchie RO
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1504-13. PubMed ID: 21783160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.