These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 26380290)

  • 21. Extracting terms from clinical records of traditional Chinese medicine.
    Cao C; Sun M; Wang S
    Front Med; 2014 Sep; 8(3):347-51. PubMed ID: 25159995
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identifying risk factors for heart disease over time: Overview of 2014 i2b2/UTHealth shared task Track 2.
    Stubbs A; Kotfila C; Xu H; Uzuner Ö
    J Biomed Inform; 2015 Dec; 58 Suppl(Suppl):S67-S77. PubMed ID: 26210362
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Data-Driven Information Extraction from Chinese Electronic Medical Records.
    Xu D; Zhang M; Zhao T; Ge C; Gao W; Wei J; Zhu KQ
    PLoS One; 2015; 10(8):e0136270. PubMed ID: 26295801
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cardiac health and diabetes mellitus in women: problems and prospects.
    Ren J
    Minerva Cardioangiol; 2006 Jun; 54(3):289-309. PubMed ID: 16733504
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modern Clinical Text Mining: A Guide and Review.
    Percha B
    Annu Rev Biomed Data Sci; 2021 Jul; 4():165-187. PubMed ID: 34465177
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Noninvasive diagnosis of nonalcoholic steatohepatitis disease based on clinical decision support system.
    Douali N; Abdennour M; Sasso M; Miette V; Tordjman J; Bedossa P; Veyrie N; Poitou C; Aron-Wisnewsky J; Clément K; Jaulent MC; Zucker JD
    Stud Health Technol Inform; 2013; 192():1178. PubMed ID: 23920952
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A flexible data-driven comorbidity feature extraction framework.
    Sideris C; Pourhomayoun M; Kalantarian H; Sarrafzadeh M
    Comput Biol Med; 2016 Jun; 73():165-72. PubMed ID: 27127895
    [TBL] [Abstract][Full Text] [Related]  

  • 28. From data mining rules to medical logical modules and medical advices.
    Gomoi V; Vida M; Robu R; Stoicu-Tivadar V; Bernad E; Lupşe O
    Stud Health Technol Inform; 2013; 192():1094. PubMed ID: 23920868
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regular expression-based learning to extract bodyweight values from clinical notes.
    Murtaugh MA; Gibson BS; Redd D; Zeng-Treitler Q
    J Biomed Inform; 2015 Apr; 54():186-90. PubMed ID: 25746391
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evicase: an evidence-based case structuring approach for personalized healthcare.
    Carmeli B; Casali P; Goldbraich A; Goldsteen A; Kent C; Licitra L; Locatelli P; Restifo N; Rinott R; Sini E; Torresani M; Waks Z
    Stud Health Technol Inform; 2012; 180():604-8. PubMed ID: 22874262
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Linking glycemic dysregulation in diabetes to symptoms, comorbidities, and genetics through EHR data mining.
    Kirk IK; Simon C; Banasik K; Holm PC; Haue AD; Jensen PB; Juhl Jensen L; Rodríguez CL; Pedersen MK; Eriksson R; Andersen HU; Almdal T; Bork-Jensen J; Grarup N; Borch-Johnsen K; Pedersen O; Pociot F; Hansen T; Bergholdt R; Rossing P; Brunak S
    Elife; 2019 Dec; 8():. PubMed ID: 31818369
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predicting Stroke from Electronic Health Records.
    Nwosu CS; Dev S; Bhardwaj P; Veeravalli B; John D
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5704-5707. PubMed ID: 31947147
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mining free-text medical records for companion animal enteric syndrome surveillance.
    Anholt RM; Berezowski J; Jamal I; Ribble C; Stephen C
    Prev Vet Med; 2014 Mar; 113(4):417-22. PubMed ID: 24485708
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Using natural language processing and machine learning to identify gout flares from electronic clinical notes.
    Zheng C; Rashid N; Wu YL; Koblick R; Lin AT; Levy GD; Cheetham TC
    Arthritis Care Res (Hoboken); 2014 Nov; 66(11):1740-8. PubMed ID: 24664671
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Secondary use of electronic health records for building cohort studies through top-down information extraction.
    Kreuzthaler M; Schulz S; Berghold A
    J Biomed Inform; 2015 Feb; 53():188-95. PubMed ID: 25451102
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Automatic extracting of patient-related attributes: disease, age, gender and race.
    Zhu H; Ni Y; Cai P; Qiu Z; Cao F
    Stud Health Technol Inform; 2012; 180():589-93. PubMed ID: 22874259
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A methodology for interactive mining and visual analysis of clinical event patterns using electronic health record data.
    Gotz D; Wang F; Perer A
    J Biomed Inform; 2014 Apr; 48():148-59. PubMed ID: 24486355
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A comparison of machine learning techniques for detection of drug target articles.
    Danger R; Segura-Bedmar I; Martínez P; Rosso P
    J Biomed Inform; 2010 Dec; 43(6):902-13. PubMed ID: 20688192
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Automatic generation of case-detection algorithms to identify children with asthma from large electronic health record databases.
    Afzal Z; Engelkes M; Verhamme KM; Janssens HM; Sturkenboom MC; Kors JA; Schuemie MJ
    Pharmacoepidemiol Drug Saf; 2013 Aug; 22(8):826-33. PubMed ID: 23592573
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Using Electronic Health Records To Generate Phenotypes For Research.
    Pendergrass SA; Crawford DC
    Curr Protoc Hum Genet; 2019 Jan; 100(1):e80. PubMed ID: 30516347
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.