These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
263 related articles for article (PubMed ID: 26380301)
1. Evaluation of Influence of Various Polymers on Dissolution and Phase Behavior of Carbamazepine-Succinic Acid Cocrystal in Matrix Tablets. Ullah M; Ullah H; Murtaza G; Mahmood Q; Hussain I Biomed Res Int; 2015; 2015():870656. PubMed ID: 26380301 [TBL] [Abstract][Full Text] [Related]
2. The development of carbamazepine-succinic acid cocrystal tablet formulations with improved in vitro and in vivo performance. Ullah M; Hussain I; Sun CC Drug Dev Ind Pharm; 2016; 42(6):969-76. PubMed ID: 26460090 [TBL] [Abstract][Full Text] [Related]
3. A New Extrudable Form of Hypromellose: AFFINISOL™ HPMC HME. Huang S; O'Donnell KP; Keen JM; Rickard MA; McGinity JW; Williams RO AAPS PharmSciTech; 2016 Feb; 17(1):106-19. PubMed ID: 26335416 [TBL] [Abstract][Full Text] [Related]
4. Understanding the Effects of a Polymer on the Surface Dissolution of Pharmaceutical Cocrystals Using Combined Experimental and Molecular Dynamics Simulation Approaches. Kirubakaran P; Wang K; Rosbottom I; Cross RBM; Li M Mol Pharm; 2020 Feb; 17(2):517-529. PubMed ID: 31887053 [TBL] [Abstract][Full Text] [Related]
5. Matrix-assisted cocrystallization (MAC) simultaneous production and formulation of pharmaceutical cocrystals by hot-melt extrusion. Boksa K; Otte A; Pinal R J Pharm Sci; 2014 Sep; 103(9):2904-2910. PubMed ID: 24807421 [TBL] [Abstract][Full Text] [Related]
6. Investigation of the effect of hydroxypropyl methylcellulose on the phase transformation and release profiles of carbamazepine-nicotinamide cocrystal. Li M; Qiu S; Lu Y; Wang K; Lai X; Rehan M Pharm Res; 2014 Sep; 31(9):2312-25. PubMed ID: 24590881 [TBL] [Abstract][Full Text] [Related]
7. Effects of coformers on phase transformation and release profiles of carbamazepine cocrystals in hydroxypropyl methylcellulose based matrix tablets. Qiu S; Li M Int J Pharm; 2015 Feb; 479(1):118-28. PubMed ID: 25542989 [TBL] [Abstract][Full Text] [Related]
8. Improved in vitro and in vivo performance of carbamazepine enabled by using a succinic acid cocrystal in a stable suspension formulation. Ullah M; Shah MR; Bin Asad MHH; Hasan SMF; Hussain I Pak J Pharm Sci; 2017 Nov; 30(6):2139-2145. PubMed ID: 29175782 [TBL] [Abstract][Full Text] [Related]
9. Poly vinyl acetate and ammonio methacrylate copolymer as unconventional polymer blends increase the mechanical robustness of HPMC matrix tablets. Ali R; Dashevsky A; Bodmeier R Int J Pharm; 2017 Jan; 516(1-2):3-8. PubMed ID: 27818241 [TBL] [Abstract][Full Text] [Related]
10. Effects of Coformer and Polymer on Particle Surface Solution-Mediated Phase Transformation of Cocrystals in Aqueous Media. Omori M; Watanabe T; Uekusa T; Oki J; Inoue D; Sugano K Mol Pharm; 2020 Oct; 17(10):3825-3836. PubMed ID: 32870691 [TBL] [Abstract][Full Text] [Related]
11. Influence of hydrophilic polymers on the complexation of carbamazepine with hydroxypropyl-β-cyclodextrin. Medarević D; Kachrimanis K; Djurić Z; Ibrić S Eur J Pharm Sci; 2015 Oct; 78():273-85. PubMed ID: 26255049 [TBL] [Abstract][Full Text] [Related]
12. The use of inorganic salts to improve the dissolution characteristics of tablets containing Soluplus®-based solid dispersions. Hughey JR; Keen JM; Miller DA; Kolter K; Langley N; McGinity JW Eur J Pharm Sci; 2013 Mar; 48(4-5):758-66. PubMed ID: 23348153 [TBL] [Abstract][Full Text] [Related]
13. Understanding impact of pre-dissolved polymers on dissolution behavior of soluble carbamazepine cocrystal. Ullah M; Khan SA; Shah SM; Rabbani I; Sadozai SK; Abbas N; Bin Asad MHH; Badshah M; Hasan SMF; Hussain I Pak J Pharm Sci; 2019 May; 32(3):1049-1055. PubMed ID: 31278719 [TBL] [Abstract][Full Text] [Related]
14. Expedited Tablet Formulation Development of a Highly Soluble Carbamazepine Cocrystal Enabled by Precipitation Inhibition in Diffusion Layer. Yamashita H; Sun CC Pharm Res; 2019 Apr; 36(6):90. PubMed ID: 31016440 [TBL] [Abstract][Full Text] [Related]
16. Solvent-shift strategy to identify suitable polymers to inhibit humidity-induced solid-state crystallization of lacidipine amorphous solid dispersions. Sun M; Wu C; Fu Q; Di D; Kuang X; Wang C; He Z; Wang J; Sun J Int J Pharm; 2016 Apr; 503(1-2):238-46. PubMed ID: 26869398 [TBL] [Abstract][Full Text] [Related]
17. Stability-enhanced hot-melt extruded amorphous solid dispersions via combinations of Soluplus® and HPMCAS-HF. Alshahrani SM; Lu W; Park JB; Morott JT; Alsulays BB; Majumdar S; Langley N; Kolter K; Gryczke A; Repka MA AAPS PharmSciTech; 2015 Aug; 16(4):824-34. PubMed ID: 25567525 [TBL] [Abstract][Full Text] [Related]
18. Comparison of two DSC-based methods to predict drug-polymer solubility. Rask MB; Knopp MM; Olesen NE; Holm R; Rades T Int J Pharm; 2018 Apr; 540(1-2):98-105. PubMed ID: 29425764 [TBL] [Abstract][Full Text] [Related]
19. The role of the polymer matrix in solvent-free hot melt extrusion continuous process for mechanochemical synthesis of pharmaceutical cocrystal. Gajda M; Nartowski KP; Pluta J; Karolewicz B Eur J Pharm Biopharm; 2018 Oct; 131():48-59. PubMed ID: 30205892 [TBL] [Abstract][Full Text] [Related]
20. HPLC determination of olanzapine and carbamazepine in their nicotinamide cocrystals and investigation of the dissolution profiles of cocrystal tablet formulations. Renkoğlu P; Çelebier M; Arıca-Yegin B Pharm Dev Technol; 2015 May; 20(3):380-4. PubMed ID: 24521464 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]