BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 26380575)

  • 21. Design and Control of Concentric-Tube Robots.
    Dupont PE; Lock J; Itkowitz B; Butler E
    IEEE Trans Robot; 2010 Apr; 26(2):209-225. PubMed ID: 21258648
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Surgeon Design Interface for Patient-Specific Concentric Tube Robots.
    Morimoto TK; Greer JD; Hsieh MH; Okamura AM
    Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron; 2016 Jun; 2016():41-48. PubMed ID: 28656124
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tip estimation approach for concentric tube robots using 2D ultrasound images and kinematic model.
    Li Z; Yang X; Song S; Liu L; Meng MQ
    Med Biol Eng Comput; 2021 Aug; 59(7-8):1461-1473. PubMed ID: 34156603
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Dynamic Model for Concentric Tube Robots.
    Till J; Aloi V; Riojas KE; Anderson PL; Webster RJ; Rucker C
    IEEE Trans Robot; 2020 Dec; 36(6):1704-1718. PubMed ID: 33603591
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Geometrically Exact Model for Externally Loaded Concentric-Tube Continuum Robots.
    Rucker DC; Jones BA; Webster RJ
    IEEE Trans Robot; 2010; 26(5):769-780. PubMed ID: 21566688
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechatronic Design of a Two-Arm Concentric Tube Robot System for Rigid Neuroendoscopy.
    Rox MF; Ropella DS; Hendrick RJ; Blum E; Naftel RP; Bow HC; Herrell SD; Weaver KD; Chambless LB; Webster RJ
    IEEE ASME Trans Mechatron; 2020 Jun; 25(3):1432-1443. PubMed ID: 33746503
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Real-Time Shape Estimation for Concentric Tube Continuum Robots with a Single Force/Torque Sensor.
    Donat H; Gu J; Steil JJ
    Front Robot AI; 2021; 8():734033. PubMed ID: 34671648
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Toward the Design of Personalized Continuum Surgical Robots.
    Morimoto TK; Greer JD; Hawkes EW; Hsieh MH; Okamura AM
    Ann Biomed Eng; 2018 Oct; 46(10):1522-1533. PubMed ID: 29855755
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design optimization of a contact-aided continuum robot for endobronchial interventions based on anatomical constraints.
    Ros-Freixedes L; Gao A; Liu N; Shen M; Yang GZ
    Int J Comput Assist Radiol Surg; 2019 Jul; 14(7):1137-1146. PubMed ID: 30989504
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigating exploration for deep reinforcement learning of concentric tube robot control.
    Iyengar K; Dwyer G; Stoyanov D
    Int J Comput Assist Radiol Surg; 2020 Jul; 15(7):1157-1165. PubMed ID: 32506349
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stiffness Control of a Continuum Manipulator in Contact with a Soft Environment.
    Mahvash M; Dupont PE
    Rep U S; 2010 Dec; 2010():863-870. PubMed ID: 21399719
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Eccentric Tube Robots as Multiarmed Steerable Sheaths.
    Wang J; Peine J; Dupont PE
    IEEE Trans Robot; 2022 Feb; 38(1):477-490. PubMed ID: 36035379
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modeling Tube Clearance and Bounding the Effect of Friction in Concentric Tube Robot Kinematics.
    Ha J; Fagogenis G; Dupont PE
    IEEE Trans Robot; 2019 Apr; 35(2):353-370. PubMed ID: 30976208
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Toward Extending Concentric Tube Robot Kinematics for Large Clearance and Impulse Curvature.
    Zhang Z; Shen J; Ha J; Chen Y
    IEEE Robot Autom Lett; 2024 Mar; 9(3):2407-2414. PubMed ID: 38912312
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design of 3-D Printed Concentric Tube Robots.
    Morimoto TK; Okamura AM
    IEEE Trans Robot; 2016 Dec; 32(6):1419-1430. PubMed ID: 28713227
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Torsional Kinematic Model for Concentric Tube Robots.
    Dupont PE; Lock J; Butler E
    IEEE Int Conf Robot Autom; 2009 May; 2009():2964-2971. PubMed ID: 21479158
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Telerobotic System for Transnasal Surgery.
    Burgner J; Rucker DC; Gilbert HB; Swaney PJ; Russell PT; Weaver KD; Webster RJ
    IEEE ASME Trans Mechatron; 2013 Jun; 19(3):996-1006. PubMed ID: 25089086
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inverse Kinematics of Concentric Tube Robots in the Presence of Environmental Constraints.
    Jabari M; Zakeri M; Janabi-Sharifi F; Norouzi-Ghazbi S
    Appl Bionics Biomech; 2021; 2021():4107732. PubMed ID: 34434252
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimal Concentric Tube Robot Design for Safe Intracerebral Hemorrhage Removal.
    Huang Z; Alkhars H; Gunderman A; Sigounas D; Cleary K; Chen Y
    J Mech Robot; 2024 Aug; 16(8):. PubMed ID: 38434486
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design of a three-segment continuum robot for minimally invasive surgery.
    Ouyang B; Liu Y; Sun D
    Robotics Biomim; 2016; 3():2. PubMed ID: 27073750
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.