These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 26380694)

  • 1. Induced responses to grazing by an insect herbivore (Acentria ephemerella) in an immature macrophyte (Myriophyllum spicatum): an isotopic study.
    Rothhaupt KO; Fornoff F; Yohannes E
    Ecol Evol; 2015 Sep; 5(17):3657-65. PubMed ID: 26380694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induced defense mechanisms in an aquatic angiosperm to insect herbivory.
    Fornoff F; Gross EM
    Oecologia; 2014 May; 175(1):173-85. PubMed ID: 24429525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental evidence for changes in submersed macrophyte species composition caused by the herbivore Acentria ephemerella (Lepidoptera).
    Gross EM; Johnson RL; Hairston NG
    Oecologia; 2001 Mar; 127(1):105-114. PubMed ID: 28547160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of polyphenols on growth of the aquatic herbivore Acentria ephemerella.
    Choi C; Bareiss C; Walenciak O; Gross EM
    J Chem Ecol; 2002 Nov; 28(11):2245-56. PubMed ID: 12523565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nutrient enrichment, propagule pressure, and herbivory interactively influence the competitive ability of an invasive alien macrophyte
    Huang R; Oduor AMO; Yan Y; Yu W; Chao C; Dong L; Jin S; Li F
    Front Plant Sci; 2024; 15():1411767. PubMed ID: 38872881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Myriophyllum spicatum-derived tannins on gut microbiota of its herbivore Acentria ephemerella.
    Walenciak O; Zwisler W; Gros EM
    J Chem Ecol; 2002 Oct; 28(10):2045-56. PubMed ID: 12474899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of epiphytic algae on biomass and physiology of Myriophyllum spicatum L. with the increase of nitrogen and phosphorus availability in the water body.
    Song YZ; Wang JQ; Gao YX
    Environ Sci Pollut Res Int; 2017 Apr; 24(10):9548-9555. PubMed ID: 28243961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Asymmetric competition via induced resistance: specialist herbivores indirectly suppress generalist preference and populations.
    Long JD; Hamilton RS; Mitchell JL
    Ecology; 2007 May; 88(5):1232-40. PubMed ID: 17536409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Herbivore regulation of plant abundance in aquatic ecosystems.
    Wood KA; O'Hare MT; McDonald C; Searle KR; Daunt F; Stillman RA
    Biol Rev Camb Philos Soc; 2017 May; 92(2):1128-1141. PubMed ID: 27062094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coping with herbivory: Photosynthetic capacity and resource allocation in two semiarid Agropyron bunchgrasses.
    Caldwell MM; Richards JH; Johnson DA; Nowak RS; Dzurec RS
    Oecologia; 1981 Aug; 50(1):14-24. PubMed ID: 28310058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemically mediated host-plant selection by the milfoil weevil: a freshwater insect-plant interaction.
    Marko MD; Newman RM; Gleason FK
    J Chem Ecol; 2005 Dec; 31(12):2857-76. PubMed ID: 16365710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The relative and combined effects of herbivore assemblage and soil nitrogen on plant diversity.
    Zhang M; Liu B; Li G; Kuang Y; Yue X; Jiang S; Liu J; Wang L
    Sci China Life Sci; 2022 Apr; 65(4):830-837. PubMed ID: 34387837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Testing the stress gradient hypothesis in herbivore communities facilitation peaks at intermediate nutrient levels.
    Bakker ES; Dobrescu I; Straile D; Holmgren M
    Ecology; 2013 Aug; 94(8):1776-84. PubMed ID: 24015521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical defense in Elodea nuttallii reduces feeding and growth of aquatic herbivorous Lepidoptera.
    Erhard D; Pohnert G; Gross EM
    J Chem Ecol; 2007 Aug; 33(8):1646-61. PubMed ID: 17577598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of monochloroacetic acid (MCA) degradation and toxicity to Lemna gibba, Myriophyllum spicatum, and Myriophyllum sibiricum in aquatic microcosms.
    Hanson ML; Sibley PK; Ellis DA; Mabury SA; Muir DC; Solomon KR
    Aquat Toxicol; 2002 Dec; 61(3-4):251-73. PubMed ID: 12359395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of leaf nitrogen content in determining turtlegrass (Thalassia testudinum) grazing by a generalized herbivore in the northeastern Gulf of Mexico.
    Valentine JF; Heck KL
    J Exp Mar Biol Ecol; 2001 Mar; 258(1):65-86. PubMed ID: 11239626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oviposition specificity and behavior of the watermilfoil specialist Euhrychiopsis lecontei.
    Solarz SL; Newman RM
    Oecologia; 1996 May; 106(3):337-344. PubMed ID: 28307321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shade tolerance as a key trait in invasion success of submerged macrophyte
    Koleszár G; Lukács BA; Nagy PT; Szabó S
    Ecol Evol; 2022 Sep; 12(9):e9306. PubMed ID: 36177112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specificity in Mesograzer-Induced Defences in Seagrasses.
    Martínez-Crego B; Arteaga P; Ueber A; Engelen AH; Santos R; Molis M
    PLoS One; 2015; 10(10):e0141219. PubMed ID: 26506103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Animal aggregations promote emergent aquatic plant production at the aquatic-terrestrial interface.
    Lopez JW; Parr TB; Allen DC; Vaughn CC
    Ecology; 2020 Oct; 101(10):e03126. PubMed ID: 32602173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.