These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 26380711)

  • 21. Improved Pedestrian Dead Reckoning Based on a Robust Adaptive Kalman Filter for Indoor Inertial Location System.
    Fan Q; Zhang H; Pan P; Zhuang X; Jia J; Zhang P; Zhao Z; Zhu G; Tang Y
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30642088
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Practical and Accurate Indoor Localization System Using Deep Learning.
    Yoon J; Kim S
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146116
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Context-Aware Statistical Dead Reckoning for Localization in IoT Scenarios.
    Munoz-Rodriguez D; Villalpando-Hernandez R; Vargas-Rosales C
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447836
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multiple systems for spatial learning: dead reckoning and beacon homing in rats.
    Shettleworth SJ; Sutton JE
    J Exp Psychol Anim Behav Process; 2005 Apr; 31(2):125-41. PubMed ID: 15839771
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Step Length Is a More Reliable Measurement Than Walking Speed for Pedestrian Dead-Reckoning.
    Elyasi F; Manduchi R
    Int Conf Indoor Position Indoor Navig; 2023 Sep; 2023():. PubMed ID: 38152683
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Positioning and Navigation Method Combining Multimotion Features Dead Reckoning with Acoustic Localization.
    Yan S; Xu X; Luo X; Xiao J; Ji Y; Wang R
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139693
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Combining a Modified Particle Filter Method and Indoor Magnetic Fingerprint Map to Assist Pedestrian Dead Reckoning for Indoor Positioning and Navigation.
    Ning FS; Chen YC
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31905699
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Robust dead reckoning system for mobile robots based on particle filter and raw range scan.
    Duan Z; Cai Z; Min H
    Sensors (Basel); 2014 Sep; 14(9):16532-62. PubMed ID: 25192318
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lane Detection Aided Online Dead Reckoning for GNSS Denied Environments.
    Jeon J; Hwang Y; Jeong Y; Park S; Kweon IS; Choi SB
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34696018
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Magnetic-Map-Matching-Aided Pedestrian Navigation Using Outlier Mitigation Based on Multiple Sensors and Roughness Weighting.
    Kim YH; Choi MJ; Kim EJ; Song JW
    Sensors (Basel); 2019 Nov; 19(21):. PubMed ID: 31684139
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Accurate Stride-Length Estimation Based on LT-StrideNet for Pedestrian Dead Reckoning Using a Shank-Mounted Sensor.
    Li Y; Zeng G; Wang L; Tan K
    Micromachines (Basel); 2023 May; 14(6):. PubMed ID: 37374755
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Medial septum lesions disrupt exploratory trip organization: evidence for septohippocampal involvement in dead reckoning.
    Martin MM; Horn KL; Kusman KJ; Wallace DG
    Physiol Behav; 2007 Feb; 90(2-3):412-24. PubMed ID: 17126862
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Vector graph assisted pedestrian dead reckoning using an unconstrained smartphone.
    Qian J; Pei L; Ma J; Ying R; Liu P
    Sensors (Basel); 2015 Mar; 15(3):5032-57. PubMed ID: 25738763
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An Alignment Method for Strapdown Inertial Navigation Systems Assisted by Doppler Radar on a Vehicle-Borne Moving Base.
    Yang B; Xi J; Yang J; Xue L
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31640227
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Decision rules for determining terrestrial movement and the consequences for filtering high-resolution global positioning system tracks: a case study using the African lion (
    Gunner RM; Wilson RP; Holton MD; Hopkins P; Bell SH; Marks NJ; Bennett NC; Ferreira S; Govender D; Viljoen P; Bruns A; van Schalkwyk OL; Bertelsen MF; Duarte CM; van Rooyen MC; Tambling CJ; Göppert A; Diesel D; Scantlebury DM
    J R Soc Interface; 2022 Jan; 19(186):20210692. PubMed ID: 35042386
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A new direction for differentiating animal activity based on measuring angular velocity about the yaw axis.
    Gunner RM; Wilson RP; Holton MD; Scott R; Hopkins P; Duarte CM
    Ecol Evol; 2020 Jul; 10(14):7872-7886. PubMed ID: 32760571
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Research on Pedestrian Indoor Positioning Based on Two-Step Robust Adaptive Cubature Kalman Filter with Smartphone MEMS Sensors.
    Geng J; Yu X; Wu C; Zhang G
    Micromachines (Basel); 2023 Jun; 14(6):. PubMed ID: 37374836
    [TBL] [Abstract][Full Text] [Related]  

  • 38. No Sex or Age Difference in Dead-Reckoning Ability among Tsimane Forager-Horticulturalists.
    Trumble BC; Gaulin SJ; Dunbar MD; Kaplan H; Gurven M
    Hum Nat; 2016 Mar; 27(1):51-67. PubMed ID: 26590826
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inertial Pocket Navigation System: Unaided 3D Positioning.
    Diaz EM
    Sensors (Basel); 2015 Apr; 15(4):9156-78. PubMed ID: 25897501
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pedestrian Dead Reckoning Based on Motion Mode Recognition Using a Smartphone.
    Wang B; Liu X; Yu B; Jia R; Gan X
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29867027
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.