BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 26380880)

  • 1. Crystal structure and tartrate inhibition of Legionella pneumophila histidine acid phosphatase.
    Dhatwalia R; Singh H; Reilly TJ; Tanner JJ
    Arch Biochem Biophys; 2015 Nov; 585():32-38. PubMed ID: 26380880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystallization and preliminary crystallographic analysis of the major acid phosphatase from Legionella pneumophila.
    Zhou D; Pan Y; Chen X; Zhang N; Ge H
    Acta Crystallogr F Struct Biol Commun; 2015 Jun; 71(Pt 6):779-83. PubMed ID: 26057812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural insights into a new substrate binding mode of a histidine acid phosphatase from Legionella pneumophila.
    Guo Y; Zhou D; Zhang H; Zhang NN; Qi X; Chen X; Chen Q; Li J; Ge H; Teng YB
    Biochem Biophys Res Commun; 2021 Feb; 540():90-94. PubMed ID: 33450485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal Structures of the histidine acid phosphatase from Francisella tularensis provide insight into substrate recognition.
    Singh H; Felts RL; Schuermann JP; Reilly TJ; Tanner JJ
    J Mol Biol; 2009 Dec; 394(5):893-904. PubMed ID: 19836403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structures and kinetics for plant nucleoside triphosphate diphosphohydrolases support a domain motion catalytic mechanism.
    Summers EL; Cumming MH; Oulavallickal T; Roberts NJ; Arcus VL
    Protein Sci; 2017 Aug; 26(8):1627-1638. PubMed ID: 28543850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystallization of a newly discovered histidine acid phosphatase from Francisella tularensis.
    Felts RL; Reilly TJ; Calcutt MJ; Tanner JJ
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2006 Jan; 62(Pt 1):32-5. PubMed ID: 16511256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of the N-terminal domain of the effector protein LegC3 from Legionella pneumophila.
    Yao D; Cherney M; Cygler M
    Acta Crystallogr D Biol Crystallogr; 2014 Feb; 70(Pt 2):436-41. PubMed ID: 24531477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A dimeric catalytic core relates the short and long forms of ATP-phosphoribosyltransferase.
    Mittelstädt G; Jiao W; Livingstone EK; Moggré GJ; Nazmi AR; Parker EJ
    Biochem J; 2018 Jan; 475(1):247-260. PubMed ID: 29208762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the structure and catalytic activity of Legionella pneumophila VipF.
    Young BH; Caldwell TA; McKenzie AM; Kokhan O; Berndsen CE
    Proteins; 2016 Oct; 84(10):1422-30. PubMed ID: 27315603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of L-serine dehydratase from Legionella pneumophila: novel use of the C-terminal cysteine as an intrinsic competitive inhibitor.
    Thoden JB; Holden HM; Grant GA
    Biochemistry; 2014 Dec; 53(48):7615-24. PubMed ID: 25380533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New crystal forms of NTPDase1 from the bacterium Legionella pneumophila.
    Zebisch M; Schäfer P; Lauble P; Sträter N
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2013 Mar; 69(Pt 3):257-62. PubMed ID: 23519799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional structure of rat acid phosphatase in complex with L(+)-tartrate.
    Lindqvist Y; Schneider G; Vihko P
    J Biol Chem; 1993 Oct; 268(28):20744-6. PubMed ID: 8407898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The YhhN protein of Legionella pneumophila is a Lysoplasmalogenase.
    Jurkowitz MS; Patel A; Wu LC; Krautwater A; Pfeiffer DR; Bell CE
    Biochim Biophys Acta; 2015 Feb; 1848(2):742-51. PubMed ID: 25445671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal Structure and Biochemical Characterization of an Aminopeptidase LapB from Legionella pneumophila.
    Zhang N; Yin S; Zhang W; Gong X; Zhang N; Fang K; Ge H
    J Agric Food Chem; 2017 Aug; 65(34):7569-7578. PubMed ID: 28776986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A structure-based proposal for the catalytic mechanism of the bacterial acid phosphatase AphA belonging to the DDDD superfamily of phosphohydrolases.
    Calderone V; Forleo C; Benvenuti M; Thaller MC; Rossolini GM; Mangani S
    J Mol Biol; 2006 Jan; 355(4):708-21. PubMed ID: 16330049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural basis for Rab1 de-AMPylation by the Legionella pneumophila effector SidD.
    Chen Y; Tascón I; Neunuebel MR; Pallara C; Brady J; Kinch LN; Fernández-Recio J; Rojas AL; Machner MP; Hierro A
    PLoS Pathog; 2013; 9(5):e1003382. PubMed ID: 23696742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Legionella effector ADP-ribosyltransferase inactivates glutamate dehydrogenase.
    Black MH; Osinski A; Park GJ; Gradowski M; Servage KA; Pawłowski K; Tagliabracci VS
    J Biol Chem; 2021; 296():100301. PubMed ID: 33476647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Campylobacter jejuni adenosine triphosphate phosphoribosyltransferase is an active hexamer that is allosterically controlled by the twisting of a regulatory tail.
    Mittelstädt G; Moggré GJ; Panjikar S; Nazmi AR; Parker EJ
    Protein Sci; 2016 Aug; 25(8):1492-506. PubMed ID: 27191057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of Francisella tularensis AcpA: prototype of a unique superfamily of acid phosphatases and phospholipases C.
    Felts RL; Reilly TJ; Tanner JJ
    J Biol Chem; 2006 Oct; 281(40):30289-98. PubMed ID: 16899453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics and Structure of a Cold-Adapted Hetero-Octameric ATP Phosphoribosyltransferase.
    Stroek R; Ge Y; Talbot PD; Glok MK; Bernaś KE; Thomson CM; Gould ER; Alphey MS; Liu H; Florence GJ; Naismith JH; da Silva RG
    Biochemistry; 2017 Feb; 56(5):793-803. PubMed ID: 28092443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.