These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 26380891)

  • 1. Design Principles for Nanoparticles Enveloped by a Polymer-Tethered Lipid Membrane.
    Hu M; Stanzione F; Sum AK; Faller R; Deserno M
    ACS Nano; 2015 Oct; 9(10):9942-54. PubMed ID: 26380891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphological control of grafted polymer films via attraction to small nanoparticle inclusions.
    Opferman MG; Coalson RD; Jasnow D; Zilman A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 1):031806. PubMed ID: 23030937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polymer stiffness governs template mediated self-assembly of liposome-like nanoparticles: simulation, theory and experiment.
    Shen Z; Loe DT; Fisher A; Kröger M; Rouge JL; Li Y
    Nanoscale; 2019 Nov; 11(42):20179-20193. PubMed ID: 31617539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid-polymer hybrid nanoparticles as a next-generation drug delivery platform: state of the art, emerging technologies, and perspectives.
    Mukherjee A; Waters AK; Kalyan P; Achrol AS; Kesari S; Yenugonda VM
    Int J Nanomedicine; 2019; 14():1937-1952. PubMed ID: 30936695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoparticle induced fusion of lipid membranes.
    Blasco S; Sukeník L; Vácha R
    Nanoscale; 2024 May; 16(21):10221-10229. PubMed ID: 38679949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissipative particle dynamics simulations of polymer-protected nanoparticle self-assembly.
    Spaeth JR; Kevrekidis IG; Panagiotopoulos AZ
    J Chem Phys; 2011 Nov; 135(18):184903. PubMed ID: 22088077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review.
    Hadinoto K; Sundaresan A; Cheow WS
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt A):427-43. PubMed ID: 23872180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Receptor-mediated membrane adhesion of lipid-polymer hybrid (LPH) nanoparticles studied by dissipative particle dynamics simulations.
    Li Z; Gorfe AA
    Nanoscale; 2015 Jan; 7(2):814-24. PubMed ID: 25438167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Translocation of a nanoparticle through a fluidic channel: the role of grafted polymers.
    Su J; Yang K; Guo H
    Nanotechnology; 2014 May; 25(18):185703. PubMed ID: 24736046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembly of patterned nanoparticles on cellular membranes: effect of charge distribution.
    Li Y; Zhang X; Cao D
    J Phys Chem B; 2013 Jun; 117(22):6733-40. PubMed ID: 23668620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling the effect of nano-sized polymer particles on the properties of lipid membranes.
    Rossi G; Monticelli L
    J Phys Condens Matter; 2014 Dec; 26(50):503101. PubMed ID: 25388874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphology of polymer brushes infiltrated by attractive nanoinclusions of various sizes.
    Opferman MG; Coalson RD; Jasnow D; Zilman A
    Langmuir; 2013 Jul; 29(27):8584-91. PubMed ID: 23758614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computer simulation studies of self-assembling macromolecules.
    Shinoda W; DeVane R; Klein ML
    Curr Opin Struct Biol; 2012 Apr; 22(2):175-86. PubMed ID: 22402497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interplay of electrostatics and lipid packing determines the binding of charged polymer coated nanoparticles to model membranes.
    Biswas N; Bhattacharya R; Saha A; Jana NR; Basu JK
    Phys Chem Chem Phys; 2015 Oct; 17(37):24238-47. PubMed ID: 26327393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoparticle hardness controls the internalization pathway for drug delivery.
    Li Y; Zhang X; Cao D
    Nanoscale; 2015 Feb; 7(6):2758-69. PubMed ID: 25585060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of bidispersity in grafted chain length on grafted chain conformations and potential of mean force between polymer grafted nanoparticles in a homopolymer matrix.
    Nair N; Wentzel N; Jayaraman A
    J Chem Phys; 2011 May; 134(19):194906. PubMed ID: 21599087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural transitions of solvent-free oligomer-grafted nanoparticles.
    Chremos A; Panagiotopoulos AZ
    Phys Rev Lett; 2011 Sep; 107(10):105503. PubMed ID: 21981510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Damage in spherical cellular membrane generated by the shock waves: coarse-grained molecular dynamics simulation of lipid vesicle.
    Sliozberg Y; Chantawansri T
    J Chem Phys; 2014 Nov; 141(18):184904. PubMed ID: 25399159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Hydrophobic Core Topology and Composition on the Structure and Kinetics of Star Polymers: A Molecular Dynamics Study.
    Carr AC; Felberg LE; Piunova VA; Rice JE; Head-Gordon T; Swope WC
    J Phys Chem B; 2017 Apr; 121(13):2902-2918. PubMed ID: 28290691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploiting Conjugated Polyelectrolyte Photophysics toward Monitoring Real-Time Lipid Membrane-Surface Interaction Dynamics at the Single-Particle Level.
    Calver CF; Liu HW; Cosa G
    Langmuir; 2015 Nov; 31(43):11842-50. PubMed ID: 25955885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.