These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 26381074)

  • 21. On the Limits of Scanning Thermal Microscopy of Ultrathin Films.
    Metzke C; Frammelsberger W; Weber J; Kühnel F; Zhu K; Lanza M; Benstetter AG
    Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 31978971
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interpreting Kelvin probe force microscopy under an applied electric field: local electronic behavior of vapor-liquid-solid Si nanowires.
    Quitoriano NJ; Sanderson RN; Bae SS; Ragan R
    Nanotechnology; 2013 May; 24(20):205704. PubMed ID: 23609527
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Large area scanning probe microscope in ultra-high vacuum demonstrated for electrostatic force measurements on high-voltage devices.
    Gysin U; Glatzel T; Schmölzer T; Schöner A; Reshanov S; Bartolf H; Meyer E
    Beilstein J Nanotechnol; 2015; 6():2485-97. PubMed ID: 26885461
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Experimental setup for thermal measurements at the nanoscale using a SThM probe with niobium nitride thermometer.
    Swami R; Julié G; Le-Denmat S; Pernot G; Singhal D; Paterson J; Maire J; Motte JF; Paillet N; Guillou H; Gomès S; Bourgeois O
    Rev Sci Instrum; 2024 May; 95(5):. PubMed ID: 38814363
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kelvin probe force microscopy in application to biomolecular films: frequency modulation, amplitude modulation, and lift mode.
    Moores B; Hane F; Eng L; Leonenko Z
    Ultramicroscopy; 2010 May; 110(6):708-11. PubMed ID: 20363077
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultra-high vacuum scanning thermal microscopy for nanometer resolution quantitative thermometry.
    Kim K; Jeong W; Lee W; Reddy P
    ACS Nano; 2012 May; 6(5):4248-57. PubMed ID: 22530657
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Scanning Thermal Microscopy of Ultrathin Films: Numerical Studies Regarding Cantilever Displacement, Thermal Contact Areas, Heat Fluxes, and Heat Distribution.
    Metzke C; Kühnel F; Weber J; Benstetter G
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33669205
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A dark mode in scanning thermal microscopy.
    Ramiandrisoa L; Allard A; Joumani Y; Hay B; Gomés S
    Rev Sci Instrum; 2017 Dec; 88(12):125115. PubMed ID: 29289173
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Open-loop band excitation Kelvin probe force microscopy.
    Guo S; Kalinin SV; Jesse S
    Nanotechnology; 2012 Mar; 23(12):125704. PubMed ID: 22407131
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Practical aspects of single-pass scan Kelvin probe force microscopy.
    Li G; Mao B; Lan F; Liu L
    Rev Sci Instrum; 2012 Nov; 83(11):113701. PubMed ID: 23206065
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nano-Localized Thermal Analysis and Mapping of Surface and Sub-Surface Thermal Properties Using Scanning Thermal Microscopy (SThM).
    Pereira MJ; Amaral JS; Silva NJ; Amaral VS
    Microsc Microanal; 2016 Dec; 22(6):1270-1280. PubMed ID: 27869043
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The influence of surface topography on Kelvin probe force microscopy.
    Sadewasser S; Leendertz C; Streicher F; Lux-Steiner MCh
    Nanotechnology; 2009 Dec; 20(50):505503. PubMed ID: 19934483
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High resolution direct measurement of temperature distribution in silicon nanophotonics devices.
    Tzur M; Desiatov B; Goykhman I; Grajower M; Levy U
    Opt Express; 2013 Dec; 21(24):29195-204. PubMed ID: 24514471
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Determination of effective tip geometries in Kelvin probe force microscopy on thin insulating films on metals.
    Glatzel T; Zimmerli L; Koch S; Such B; Kawai S; Meyer E
    Nanotechnology; 2009 Jul; 20(26):264016. PubMed ID: 19509456
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Real-space measurement of potential distribution in PECVD ONO electrets by Kelvin probe force microscopy.
    Emmerich F; Thielemann C
    Nanotechnology; 2016 May; 27(20):205703. PubMed ID: 27053633
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Know your full potential: Quantitative Kelvin probe force microscopy on nanoscale electrical devices.
    Axt A; Hermes IM; Bergmann VW; Tausendpfund N; Weber SAL
    Beilstein J Nanotechnol; 2018; 9():1809-1819. PubMed ID: 29977714
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-speed digitization of the amplitude and frequency in open-loop sideband frequency-modulation Kelvin probe force microscopy.
    Stan G
    Nanotechnology; 2020 Jun; 31(38):385706. PubMed ID: 32516761
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantitative comparison of closed-loop and dual harmonic Kelvin probe force microscopy techniques.
    Kilpatrick JI; Collins L; Weber SAL; Rodriguez BJ
    Rev Sci Instrum; 2018 Dec; 89(12):123708. PubMed ID: 30599628
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermal transport in epitaxial Si
    Sachat AE; Reparaz JS; Spiece J; Alonso MI; Goñi AR; Garriga M; Vaccaro PO; Wagner MR; Kolosov OV; Sotomayor Torres CM; Alzina F
    Nanotechnology; 2017 Dec; 28(50):505704. PubMed ID: 29160238
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Combined scanning probe electronic and thermal characterization of an indium arsenide nanowire.
    Wagner T; Menges F; Riel H; Gotsmann B; Stemmer A
    Beilstein J Nanotechnol; 2018; 9():129-136. PubMed ID: 29441258
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.