These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 26381074)

  • 61. Surface potential modeling and reconstruction in Kelvin probe force microscopy.
    Xu J; Wu Y; Li W; Xu J
    Nanotechnology; 2017 Sep; 28(36):365705. PubMed ID: 28664875
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Evolution of poled state in P(VDF-TrFE)/(Pb,Ba)(Zr,Ti)O
    Shvartsman VV; Kiselev DA; Solnyshkin AV; Lupascu DC; Silibin MV
    Sci Rep; 2018 Jan; 8(1):378. PubMed ID: 29321656
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Peak Force Infrared-Kelvin Probe Force Microscopy.
    Jakob DS; Wang H; Zeng G; Otzen DE; Yan Y; Xu XG
    Angew Chem Int Ed Engl; 2020 Sep; 59(37):16083-16090. PubMed ID: 32463936
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Reducing the contact resistance of SiNW devices by employing a heavily doped carrier injection layer.
    Liu D; Shi Z; Zhang L; He C; Zhang J; Cheng M; Yang R; Tian X; Bai X; Shi D; Zhang G
    Nanotechnology; 2012 Aug; 23(30):305701. PubMed ID: 22751205
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Quantitative Characterization of Local Thermal Properties in Thermoelectric Ceramics Using "Jumping-Mode" Scanning Thermal Microscopy.
    Alikin D; Zakharchuk K; Xie W; Romanyuk K; Pereira MJ; Arias-Serrano BI; Weidenkaff A; Kholkin A; Kovalevsky AV; Tselev A
    Small Methods; 2023 Apr; 7(4):e2201516. PubMed ID: 36775977
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Note: switching crosstalk on and off in Kelvin Probe Force Microscopy.
    Polak L; de Man S; Wijngaarden RJ
    Rev Sci Instrum; 2014 Apr; 85(4):046111. PubMed ID: 24784689
    [TBL] [Abstract][Full Text] [Related]  

  • 67. New insights on atomic-resolution frequency-modulation Kelvin-probe force-microscopy imaging of semiconductors.
    Sadewasser S; Jelinek P; Fang CK; Custance O; Yamada Y; Sugimoto Y; Abe M; Morita S
    Phys Rev Lett; 2009 Dec; 103(26):266103. PubMed ID: 20366324
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Direct measurement of surface photovoltage by AC bias Kelvin probe force microscopy.
    Miyazaki M; Sugawara Y; Li YJ
    Beilstein J Nanotechnol; 2022; 13():712-720. PubMed ID: 35957676
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Investigation of thermal effects in through-silicon vias using scanning thermal microscopy.
    Wielgoszewski G; Jóźwiak G; Babij M; Baraniecki T; Geer R; Gotszalk T
    Micron; 2014 Nov; 66():63-8. PubMed ID: 25080278
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Quantitative characterization of built-in potential profile across GaAs p-n junctions using Kelvin probe force microscopy with qPlus sensor AFM.
    Ishida N; Mano T
    Nanotechnology; 2023 Nov; 35(6):. PubMed ID: 37944481
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Quantification of probe-sample interactions of a scanning thermal microscope using a nanofabricated calibration sample having programmable size.
    Ge Y; Zhang Y; Booth JA; Weaver JM; Dobson PS
    Nanotechnology; 2016 Aug; 27(32):325503. PubMed ID: 27363896
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Excluding Contact Electrification in Surface Potential Measurement Using Kelvin Probe Force Microscopy.
    Li S; Zhou Y; Zi Y; Zhang G; Wang ZL
    ACS Nano; 2016 Feb; 10(2):2528-35. PubMed ID: 26824304
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Open loop Kelvin probe force microscopy with single and multi-frequency excitation.
    Collins L; Kilpatrick JI; Weber SA; Tselev A; Vlassiouk IV; Ivanov IN; Jesse S; Kalinin SV; Rodriguez BJ
    Nanotechnology; 2013 Nov; 24(47):475702. PubMed ID: 24176878
    [TBL] [Abstract][Full Text] [Related]  

  • 74. An in-plane solid-liquid-solid growth mode for self-avoiding lateral silicon nanowires.
    Yu L; Alet PJ; Picardi G; Roca i Cabarrocas P
    Phys Rev Lett; 2009 Mar; 102(12):125501. PubMed ID: 19392293
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Atomically smooth p-doped silicon nanowires catalyzed by aluminum at low temperature.
    Moutanabbir O; Senz S; Scholz R; Alexe M; Kim Y; Pippel E; Wang Y; Wiethoff C; Nabbefeld T; Meyer zu Heringdorf F; Horn-von Hoegen M
    ACS Nano; 2011 Feb; 5(2):1313-20. PubMed ID: 21210666
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Defects in oxide surfaces studied by atomic force and scanning tunneling microscopy.
    König T; Simon GH; Heinke L; Lichtenstein L; Heyde M
    Beilstein J Nanotechnol; 2011; 2():1-14. PubMed ID: 21977410
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Ultralow Dissipation Patterned Silicon Nanowire Arrays for Scanning Probe Microscopy.
    Sahafi P; Rose W; Jordan A; Yager B; Piscitelli M; Budakian R
    Nano Lett; 2020 Jan; 20(1):218-223. PubMed ID: 31765571
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Highly end-doped silicon nanowires for field-effect transistors on flexible substrates.
    Celle C; Carella A; Mariolle D; Chevalier N; Rouvière E; Simonato JP
    Nanoscale; 2010 May; 2(5):677-80. PubMed ID: 20648308
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Effect of formation temperature and roughness on surface potential of octadecyltrichlorosilane self-assembled monolayer on silicon surfaces.
    Bush BG; DelRio FW; Opatkiewicz J; Maboudian R; Carraro C
    J Phys Chem A; 2007 Dec; 111(49):12339-43. PubMed ID: 17994712
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Characterizations of Ohmic and Schottky-behaving contacts of a single ZnO nanowire.
    Bercu B; Geng W; Simonetti O; Kostcheev S; Sartel C; Sallet V; Lérondel G; Molinari M; Giraudet L; Couteau C
    Nanotechnology; 2013 Oct; 24(41):415202. PubMed ID: 24060613
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.