BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

521 related articles for article (PubMed ID: 26381204)

  • 1. mapDIA: Preprocessing and statistical analysis of quantitative proteomics data from data independent acquisition mass spectrometry.
    Teo G; Kim S; Tsou CC; Collins B; Gingras AC; Nesvizhskii AI; Choi H
    J Proteomics; 2015 Nov; 129():108-120. PubMed ID: 26381204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative analysis of statistical methods used for detecting differential expression in label-free mass spectrometry proteomics.
    Langley SR; Mayr M
    J Proteomics; 2015 Nov; 129():83-92. PubMed ID: 26193490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. QPROT: Statistical method for testing differential expression using protein-level intensity data in label-free quantitative proteomics.
    Choi H; Kim S; Fermin D; Tsou CC; Nesvizhskii AI
    J Proteomics; 2015 Nov; 129():121-126. PubMed ID: 26254008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Data Independent Acquisition analysis in ProHits 4.0.
    Liu G; Knight JD; Zhang JP; Tsou CC; Wang J; Lambert JP; Larsen B; Tyers M; Raught B; Bandeira N; Nesvizhskii AI; Choi H; Gingras AC
    J Proteomics; 2016 Oct; 149():64-68. PubMed ID: 27132685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ProteinInferencer: Confident protein identification and multiple experiment comparison for large scale proteomics projects.
    Zhang Y; Xu T; Shan B; Hart J; Aslanian A; Han X; Zong N; Li H; Choi H; Wang D; Acharya L; Du L; Vogt PK; Ping P; Yates JR
    J Proteomics; 2015 Nov; 129():25-32. PubMed ID: 26196237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EBprot: Statistical analysis of labeling-based quantitative proteomics data.
    Koh HW; Swa HL; Fermin D; Ler SG; Gunaratne J; Choi H
    Proteomics; 2015 Aug; 15(15):2580-91. PubMed ID: 25913743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiplexed and data-independent tandem mass spectrometry for global proteome profiling.
    Chapman JD; Goodlett DR; Masselon CD
    Mass Spectrom Rev; 2014; 33(6):452-70. PubMed ID: 24281846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DIA-Umpire: comprehensive computational framework for data-independent acquisition proteomics.
    Tsou CC; Avtonomov D; Larsen B; Tucholska M; Choi H; Gingras AC; Nesvizhskii AI
    Nat Methods; 2015 Mar; 12(3):258-64, 7 p following 264. PubMed ID: 25599550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multi-model statistical approach for proteomic spectral count quantitation.
    Branson OE; Freitas MA
    J Proteomics; 2016 Jul; 144():23-32. PubMed ID: 27260494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative Analyses of Data Independent Acquisition Mass Spectrometric Approaches: DIA, WiSIM-DIA, and Untargeted DIA.
    Koopmans F; Ho JTC; Smit AB; Li KW
    Proteomics; 2018 Jan; 18(1):. PubMed ID: 29134766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MSstats: an R package for statistical analysis of quantitative mass spectrometry-based proteomic experiments.
    Choi M; Chang CY; Clough T; Broudy D; Killeen T; MacLean B; Vitek O
    Bioinformatics; 2014 Sep; 30(17):2524-6. PubMed ID: 24794931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Approaches for systematic proteome exploration.
    Falk R; Ramström M; Ståhl S; Hober S
    Biomol Eng; 2007 Jun; 24(2):155-68. PubMed ID: 17376740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and analysis of quantitative differential proteomics investigations using LC-MS technology.
    Bukhman YV; Dharsee M; Ewing R; Chu P; Topaloglou T; Le Bihan T; Goh T; Duewel H; Stewart II; Wisniewski JR; Ng NF
    J Bioinform Comput Biol; 2008 Feb; 6(1):107-23. PubMed ID: 18324749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pre- and post-processing workflow for affinity purification mass spectrometry data.
    Fischer M; Zilkenat S; Gerlach RG; Wagner S; Renard BY
    J Proteome Res; 2014 May; 13(5):2239-49. PubMed ID: 24641689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A scoring model for phosphopeptide site localization and its impact on the question of whether to use MSA.
    Fischer JSDG; Dos Santos MDM; Marchini FK; Barbosa VC; Carvalho PC; Zanchin NIT
    J Proteomics; 2015 Nov; 129():42-50. PubMed ID: 25623781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Current trends in computational inference from mass spectrometry-based proteomics.
    Webb-Robertson BJ; Cannon WR
    Brief Bioinform; 2007 Sep; 8(5):304-17. PubMed ID: 17584764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein Biomarker Discovery in Non-depleted Serum by Spectral Library-Based Data-Independent Acquisition Mass Spectrometry.
    Kraut A; Louwagie M; Bruley C; Masselon C; Couté Y; Brun V; Hesse AM
    Methods Mol Biol; 2019; 1959():129-150. PubMed ID: 30852820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational prediction of proteotypic peptides for quantitative proteomics.
    Mallick P; Schirle M; Chen SS; Flory MR; Lee H; Martin D; Ranish J; Raught B; Schmitt R; Werner T; Kuster B; Aebersold R
    Nat Biotechnol; 2007 Jan; 25(1):125-31. PubMed ID: 17195840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using cross-correlation normalized for peptide length to optimize peptide identification in shotgun proteomics.
    Yang B; Ying W; Gong Y; Zhang Y; Cai Y; Dong H; Qian X
    Rapid Commun Mass Spectrom; 2005; 19(20):2983-5. PubMed ID: 16178048
    [No Abstract]   [Full Text] [Related]  

  • 20. Phosphoproteomics by mass spectrometry and classical protein chemistry approaches.
    Salih E
    Mass Spectrom Rev; 2005; 24(6):828-46. PubMed ID: 15538747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.