These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Multiplexed and data-independent tandem mass spectrometry for global proteome profiling. Chapman JD; Goodlett DR; Masselon CD Mass Spectrom Rev; 2014; 33(6):452-70. PubMed ID: 24281846 [TBL] [Abstract][Full Text] [Related]
8. DIA-Umpire: comprehensive computational framework for data-independent acquisition proteomics. Tsou CC; Avtonomov D; Larsen B; Tucholska M; Choi H; Gingras AC; Nesvizhskii AI Nat Methods; 2015 Mar; 12(3):258-64, 7 p following 264. PubMed ID: 25599550 [TBL] [Abstract][Full Text] [Related]
9. A multi-model statistical approach for proteomic spectral count quantitation. Branson OE; Freitas MA J Proteomics; 2016 Jul; 144():23-32. PubMed ID: 27260494 [TBL] [Abstract][Full Text] [Related]
10. Comparative Analyses of Data Independent Acquisition Mass Spectrometric Approaches: DIA, WiSIM-DIA, and Untargeted DIA. Koopmans F; Ho JTC; Smit AB; Li KW Proteomics; 2018 Jan; 18(1):. PubMed ID: 29134766 [TBL] [Abstract][Full Text] [Related]
11. MSstats: an R package for statistical analysis of quantitative mass spectrometry-based proteomic experiments. Choi M; Chang CY; Clough T; Broudy D; Killeen T; MacLean B; Vitek O Bioinformatics; 2014 Sep; 30(17):2524-6. PubMed ID: 24794931 [TBL] [Abstract][Full Text] [Related]
12. Approaches for systematic proteome exploration. Falk R; Ramström M; Ståhl S; Hober S Biomol Eng; 2007 Jun; 24(2):155-68. PubMed ID: 17376740 [TBL] [Abstract][Full Text] [Related]
13. Design and analysis of quantitative differential proteomics investigations using LC-MS technology. Bukhman YV; Dharsee M; Ewing R; Chu P; Topaloglou T; Le Bihan T; Goh T; Duewel H; Stewart II; Wisniewski JR; Ng NF J Bioinform Comput Biol; 2008 Feb; 6(1):107-23. PubMed ID: 18324749 [TBL] [Abstract][Full Text] [Related]
14. Pre- and post-processing workflow for affinity purification mass spectrometry data. Fischer M; Zilkenat S; Gerlach RG; Wagner S; Renard BY J Proteome Res; 2014 May; 13(5):2239-49. PubMed ID: 24641689 [TBL] [Abstract][Full Text] [Related]
15. A scoring model for phosphopeptide site localization and its impact on the question of whether to use MSA. Fischer JSDG; Dos Santos MDM; Marchini FK; Barbosa VC; Carvalho PC; Zanchin NIT J Proteomics; 2015 Nov; 129():42-50. PubMed ID: 25623781 [TBL] [Abstract][Full Text] [Related]
16. Current trends in computational inference from mass spectrometry-based proteomics. Webb-Robertson BJ; Cannon WR Brief Bioinform; 2007 Sep; 8(5):304-17. PubMed ID: 17584764 [TBL] [Abstract][Full Text] [Related]
17. Protein Biomarker Discovery in Non-depleted Serum by Spectral Library-Based Data-Independent Acquisition Mass Spectrometry. Kraut A; Louwagie M; Bruley C; Masselon C; Couté Y; Brun V; Hesse AM Methods Mol Biol; 2019; 1959():129-150. PubMed ID: 30852820 [TBL] [Abstract][Full Text] [Related]
18. Computational prediction of proteotypic peptides for quantitative proteomics. Mallick P; Schirle M; Chen SS; Flory MR; Lee H; Martin D; Ranish J; Raught B; Schmitt R; Werner T; Kuster B; Aebersold R Nat Biotechnol; 2007 Jan; 25(1):125-31. PubMed ID: 17195840 [TBL] [Abstract][Full Text] [Related]
19. Using cross-correlation normalized for peptide length to optimize peptide identification in shotgun proteomics. Yang B; Ying W; Gong Y; Zhang Y; Cai Y; Dong H; Qian X Rapid Commun Mass Spectrom; 2005; 19(20):2983-5. PubMed ID: 16178048 [No Abstract] [Full Text] [Related]
20. Phosphoproteomics by mass spectrometry and classical protein chemistry approaches. Salih E Mass Spectrom Rev; 2005; 24(6):828-46. PubMed ID: 15538747 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]