BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 26381220)

  • 1. Fluid displacement during droplet formation at microfluidic flow-focusing junctions.
    Huang H; He X
    Lab Chip; 2015 Nov; 15(21):4197-205. PubMed ID: 26381220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent progress in the synthesis of all-aqueous two-phase droplets using microfluidic approaches.
    Daradmare S; Lee CS
    Colloids Surf B Biointerfaces; 2022 Nov; 219():112795. PubMed ID: 36049253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up.
    Garstecki P; Fuerstman MJ; Stone HA; Whitesides GM
    Lab Chip; 2006 Mar; 6(3):437-46. PubMed ID: 16511628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AC electric field controlled non-Newtonian filament thinning and droplet formation on the microscale.
    Huang Y; Wang YL; Wong TN
    Lab Chip; 2017 Aug; 17(17):2969-2981. PubMed ID: 28745766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic preparation of water-in-oil-in-water emulsions with an ultra-thin oil phase layer.
    Saeki D; Sugiura S; Kanamori T; Sato S; Ichikawa S
    Lab Chip; 2010 Feb; 10(3):357-62. PubMed ID: 20091008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geometrically-mediated snap-off of water-in-oil emulsion droplets in microfluidic flow focusing devices.
    Yao J; Oakey J
    J Oil Gas Petrochem Sci; 2018; 1(2):42-46. PubMed ID: 32864607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic Fabrication of Core-Shell Microcapsules carrying Human Pluripotent Stem Cell Spheroids.
    Gwon K; Hong HJ; Gonzalez-Suarez AM; Stybayeva G; Revzin A
    J Vis Exp; 2021 Oct; (176):. PubMed ID: 34723935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microneedle-assisted microfluidic flow focusing for versatile and high throughput water-in-water droplet generation.
    Jeyhani M; Gnyawali V; Abbasi N; Hwang DK; Tsai SSH
    J Colloid Interface Sci; 2019 Oct; 553():382-389. PubMed ID: 31226629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of initiation, rate, and routing of spontaneous capillary-driven flow of liquid droplets through microfluidic channels on SlipChip.
    Pompano RR; Platt CE; Karymov MA; Ismagilov RF
    Langmuir; 2012 Jan; 28(3):1931-41. PubMed ID: 22233156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiphase displacement manipulated by micro/nanoparticle suspensions in porous media via microfluidic experiments: From interface science to multiphase flow patterns.
    Lei W; Lu X; Wang M
    Adv Colloid Interface Sci; 2023 Jan; 311():102826. PubMed ID: 36528919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the microfluidic generation of double emulsion droplets with alginate shell.
    Huang L; Wu K; Cai S; Yu H; Liu D; Yuan W; Chen X; Ji H
    Colloids Surf B Biointerfaces; 2023 Feb; 222():113114. PubMed ID: 36577345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling of droplet traffic in interconnected microfluidic ladder devices.
    Song K; Zhang L; Hu G
    Electrophoresis; 2012 Feb; 33(3):411-8. PubMed ID: 22228275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motion of a droplet through microfluidic ratchets.
    Liu J; Yap YF; Nguyen NT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046319. PubMed ID: 19905448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Passive droplet sorting using viscoelastic flow focusing.
    Hatch AC; Patel A; Beer NR; Lee AP
    Lab Chip; 2013 Apr; 13(7):1308-15. PubMed ID: 23380996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. "V-junction": a novel structure for high-speed generation of bespoke droplet flows.
    Ding Y; Casadevall i Solvas X; deMello A
    Analyst; 2015 Jan; 140(2):414-21. PubMed ID: 25379571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Label-Free On-Chip Selective Extraction of Cell-Aggregate-Laden Microcapsules from Oil into Aqueous Solution with Optical Sensor and Dielectrophoresis.
    Sun M; Durkin P; Li J; Toth TL; He X
    ACS Sens; 2018 Feb; 3(2):410-417. PubMed ID: 29299919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Droplet size prediction in a microfluidic flow focusing device using an adaptive network based fuzzy inference system.
    Mottaghi S; Nazari M; Fattahi SM; Nazari M; Babamohammadi S
    Biomed Microdevices; 2020 Sep; 22(3):61. PubMed ID: 32876861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Droplets formation and merging in two-phase flow microfluidics.
    Gu H; Duits MH; Mugele F
    Int J Mol Sci; 2011; 12(4):2572-97. PubMed ID: 21731459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic formation of highly monodispersed multiple cored droplets using needle-based system in parallel mode.
    Lian Z; Chan Y; Luo Y; Yang X; Koh KS; Wang J; Chen GZ; Ren Y; He J
    Electrophoresis; 2020 Jun; 41(10-11):891-901. PubMed ID: 31998972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of droplets of alternating composition in microfluidic channels and applications to indexing of concentrations in droplet-based assays.
    Zheng B; Tice JD; Ismagilov RF
    Anal Chem; 2004 Sep; 76(17):4977-82. PubMed ID: 15373431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.